Running Head: CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Cribbage for People with Reduced Vision

Electronic Systems Engineering Technology Capstone Project

Prepared by:

Andrew Ashton

Saskatchewan Polytechnic

ashton1544@saskpolytech.ca

Prepared for:

Michael Lasante

Anthony Voykin

April 27, 2020

CRIBBAGE FOR PEOPLE WITH REDUCED VISION i

Acknowledgements

There are many people | would like to thank for their contributions to this project. First
and foremost, my special thanks are extended to Michael Lasante and Anthony Voykin for their
instruction and patient guidance at every step along the way. | am particularly grateful to
Jerome Wagner for sharing his knowledge, skill, and access to the equipment and components
that were necessary for this project. | would also like to thank my Saskatchewan Polytechnic
instructors, who helped me understand this project better. Assistance was also provided by my
classmates in the form of helpful suggestions, worthwhile discussions, and welcome
distractions. Lastly, | would like to thank my wife, Cara, who acted as my editor and sounding

board, and whose patience exceeded all expectations.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION ii

Abstract
The traditional method of keeping score in the card game called cribbage involves
transferring a small peg from one equally-small hole to another along a wooden board. Scores
are marked every five or ten holes using small-print text. The size of these elements creates an

obstacle for people with reduced vision.

This project aims to use electronics to enhance the cribbage score-keeping process to

make gameplay feasible for people with reduced vision.

A product research panel yielded qualitative data on the visibility of input and output
components. Handheld, wireless controllers will bring score-keeping to an easy-to-see distance.
Using clearly-labelled, large, high-contrast, coloured buttons will improve data entry. Large-
character, high-contrast, back-lit, LCDs will amplify text. Brightly-lit LEDs, coloured to

differentiate the players’ scores, will boost the visibility of the cribbage board.

The use of wireless universal asynchronous receiver transmitter (UART) radio frequency
(RF) transceiver modules provides a low-overhead hardware and software communication
system. Addressable port expander integrated circuits (ICs) are a low-cost method of driving
hundreds of LEDs with minimal microcontroller outputs. A careful electrical layout of port

expanders simplifies PCB connections and software control processes.

Programming the RF modules for explicit packet transmissions offers a high degree of
control over communication. Transmission failures are mitigated by built-in processes in the RF

modules, minimizing the need for additional software.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION iii

Table of Contents

ACKNOWIEAGEMENTS.ci it e et e e e e e e s st eeeeeeeess s nraseeeeeesesessnsssranaeeessesnnnnes i
ADSEIACE ..ttt e ii
LiSt Of FIGUIES/TADIES ..cneveeeeeeecee ettt ettt e et e e s e e et e e s bae e sabeeeeaseeesasaeeenseeensreeens Vi
L] (o X33 | Y S SUR vii
INEFOTUCTION <.ttt e e et e e e b b e e et b e e e bt e e sabeeesabeessnseesenneesneeenas 1
(o a1V Tor: | I D LTy ol e 1 o o [SR 3
Cribbage Board ENCIOSUIEciiieiiieeieiieee ettt st s e st e e st e e s e earae e e s e anaeeeesnsneeeas 3
Cribbage BOard PCBScccoiuiiieiiiiieeeeieee e sttt e sttt e et e e e st e e e s eaae e e e e s nbaeeeesnabaeeessnnsaeeeeanraeeas 5
Micro Printed CircuUit BOArdcooouiiiiieiiiiee ettt s 5

LED Printed CirCUit BOArdcooueiiiiiiiieeeiee et 6

Yol R o T N g T X 0 F USSR 7
(0oT 0} f o] | 1= o = g Tl (o U TSP PP PPTOPPRP 8
LCD MOAUIE ...t ettt e s e e et s et e s nb e s nn e sne e s 9
ROCKET SWITCNES ..ttt snee e 10
PUSRBUTEONS ...t sre e e e e nnees 11
POWET SWITCRN ... e e 12
Wireless CONTrOIEr PCBcooiiiiiiiieeieeeee ettt nnne e 12

o o Yol ST T B LK of 1] o R 14

CRIBBAGE FOR PEOPLE WITH REDUCED VISION iv

RF Module Memory Structure and Command Interfacecocovvvveeeiieiieiicieeeeiec e, 14
Transmit Data FOrmMatooviiiiiiiii e 15
Communication AttemMPt PrOCEAUIE......oiiii i e e e e e e e e e e 16
INItIAliZation PrOCEAUIEc.ueiiiieeee ettt ettt e s e 17
Controlling the SCore-Marking LEDSuueiiiiiiiie e esiiee s ssiieee s e siae e s s e e e s sne e e s s 19
Addressing the POrt EXPANTErScccuvieiiiiiiiee ettt e s e s aaae e e s saaeee s 19
Generating the OULPUL BYLES ..coccuuiiiiiciiie ettt e e et e e e s aaae e e s enteeeeenas 20
Ul E Tl CT=Ta =T o] F= 1Y AP UPRRRPR 20
PrOCESS SUMMIAIY coiiiiieii ittt eettttiree e e e e e e et tata e s s e e e eeaetesbaaasseeeesesssssnsssseseesssesssnnnnseseesnenns 23
1T ¥ ot [PP 24
2T (o] I o TN === o TSR 24
Lo LT =To I Y = =T g T | PR 24
HOW T USE ciiiiiiiiiiiiic ittt ae e e e 25
e8] o] =1 oo o)] o T- TR 27
INVESTIZAtioN AN ANGIYSIS .oceieiirieeieee et e e e eer e e e e e e e sesabbreeeeeeeseennsnrraneeeeens 28
RF Transceiver MOAUIE..........ccui i 28
ANtenNa CONSIARIAtIONSeiiiieiieiiieete ettt sre e sre e e e s e ene e 31
DIIVING The LEDS ...uuvvvviieeeeeiieiciitreeeie e e e e eectttee e e e e e e eesstbbaeeeeeeeessesassbseseeseeseessassssseseeeeeessnsssrreneeeeens 33

INPUL AN OQULPUL DEVICESuevvirieeieeieeieiiieeee e e e eectreee e e e e eeseeaabaeeeeeseesessstssaereeeeeessssssrraneeeeens 34

CRIBBAGE FOR PEOPLE WITH REDUCED VISION v

D11 o] VA 0 o] 1o] o - OO URRRRRRRPP 35

T o o0 @] o] o] o RPNt 37
RECOMMENAALIONS ...t 38
Physical Size of the Cribbage Boardc.uuiiiiiiiiiiiiiiecee e 38
[NPUL GEVICES «.vviieiitiee ettt ettt ettt e e st e e s ettt e e e e s bae e e e sabaeeeseasteeeeeaasaeeeesssaeessnsseneeeanns 39

A MOre FINIShEd LOOK......couiiiiiieiiiieee ettt et 39
RETEIEINCES ...ttt ettt e e et e e e bt e e st e e s bt e e s bt e e sabeeesabeessneesaneeas 40
AppendiX A — CoNtroller COUE.....ciiiiiiiiiiie ettt e s e e e s e e s e ataeeeesnaeeaas 42
Appendix B — Controller HEAadErs..........uuviiieiieiie ettt crre e e e e e e e nrrere e e e e e e eanns 60
Appendix C— Controller INItialization ... e 67
Appendix D — Cribbage Board COE........uuiiiiiiii ettt e e ecerre e e e e e e s snarer e e e e e e e ennns 71
Appendix E — Cribbage Board HEAEISceveeii et e et crtree e e e e e e e e e e e e e e e eanns 91
Appendix F — Cribbage Board Initialization..........cccuviiieeii et 97
APPENIX G = SCREMATICS. . uuttriiiiee e e e e e e e e eessetbraereeeeeesesanrrereeeeeeeennnns 101
Appendix H — Controller FIOW CRarts. cectrreeee e e e eesctnrree e e e e e e senrreeeeeeeeeennnns 109
Appendix | — Cribbage Board FIOW Chartscccciiieiieee e eerrene e e e e e e e 119

ApPeNdiX J — Bill Of MAtErialS...ceeiiiiiieiiieiieii et e e e e s eanrreeeeeeeeeeeans 130

CRIBBAGE FOR PEOPLE WITH REDUCED VISION Vi

List of Figures/Tables

Figure 1. LED Enclosure Base - COrNer CUt-@WaY.ccccueeeeeeeeieiiirirreereeeeesennseneeesesesssnnssnnnesesssennans 4
Figure 2. Micro Printed Circuit Board LayOut.ccc.uviiiiieiiiiicrteee e e eeevere e e e e e 5
Figure 3. LED Printed Circuit Board LayOUt.........cooccuiiiiiieei ittt e e e veree e e e e 6
Figure 4. SCOre-marking LED.coiuiuiiiiiiiiiiee ittt e e stte e st e e s s saae e e s saae e e s ssaaaeeessnnaeeeennneeeas 7
Figure 5. Controller ENClOSUre CUt-0ULS........cciiiiiiieiiiiiieeerciiee e eeitee e s e e e e s s siae e e s saaeesesnneee s 8
=W ST 1Y/ o To [PSP 9
FIgUIE 7. ROCKET SWILCR. . ..iiiiiieiiie e e e s e e s e e e e e s naae e e e nasees 10
=W I T U] o TV o PP RST 11
FIUIE 9. POWET SWILCR. «.eeiiieiieiiee et e e s e e s e e s e naae e e e snaaeeeenasnes 12
Figure 10. Wireless Controller Printed Circuit Board LayOut........cccceeevcvieeiiicieee e 13
Table 1. COMMANG BYLES ...ttt e e e e e e e e e e e e s e netaeaeeeeeeeesnnnnrraneeeeens 16
Table 2. RF Module COmMPAriSON.....ciieiiiicciiieieee e st e e e e e ee e e e e e e s e s e nnreeaeeeeeeeesnnnrranneaeanas 29
Figure 11. RF Transceiver MOAUIE. ...ccoo ettt e et e e e e e e ae e e e e 30
Figure 12. Radio ANTENNG. ... e e e e et e e e e e e s et e e e e e e e e s e s nsnnaraneeeaeas 32

Table 3. Ranking of Display COlOUIS.........uuueiiiiieei e e e e e e e e arraaeeeeeeas 36

file:///E:/project/project%20documents/Final_Report_Andrew_Ashton.docx%23_Toc38727215
file:///E:/project/project%20documents/Final_Report_Andrew_Ashton.docx%23_Toc38727219

CRIBBAGE FOR PEOPLE WITH REDUCED VISION Vii

Glossary
Printed Circuit Board: A manufactured electronic circuit contained within a structure made of
layers of conductive material. The conductive layers are separated by insulating material.
Conductive connection points are soldered to electronic components. This system uses boards
with two layers: the top layer and the bottom layer.
Serial Peripheral Interface: Simple form of serial data transfer between two devices. Normally
SPI uses four wires. In this project, all SPI connections are one-way. This means that the system
only uses three wires: chip enable, data out (from the microcontroller), and clock.
Universal Asynchronous Receiver Transmitter: Simple two-wire form of serial data transfer
between two devices. In this project, all microcontrollers and radio modules operate their UART

at 9600 bits per second.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 1

Introduction

Cribbage is a centuries-old card game that uses a unique score-keeping system (Mark,
2018). Players’ scores are kept by placing a marker called a peg into one of a series of holes in a
cribbage board. Modern cribbage boards have 120 holes for each player, plus an additional
“peg-out” hole, which marks the winning score. These cribbage boards are available in various
shapes and sizes, but are most commonly rectangular, measuring about 30-40 cm by 10-15 cm.
Since a cribbage board built for two players will have 241 holes, the holes and pegs must be
quite small in order to fit them all on a common board. A hole size of 3 mm or smaller in
diameter is not uncommon. Because of the small size, gameplay can be difficult, even
impossible, for people with reduced vision.

One possible solution to this problem is to make the cribbage board large enough to see
the parts more easily. The obvious issue with this solution is that the board would have to be
quite large and would become cumbersome and impractical. Another solution is to make a
computer game. One problem with this solution is the need for an expensive computer or
tablet. Another issue is that by removing the physical cribbage board, the game no longer
maintains the look and feel of traditional cribbage. A third solution is to have another player or
spectator keep score for a player who is unable to see the board. However, in this case, the
visually-impaired player could lose their sense of independence and self-reliance.

To make gameplay achievable for people with reduced vision, while allowing these
players to maintain their independence, a system must be designed to amplify the score-

keeping process while keeping the board at a practical size.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 2

The objectives of this project are:

e Make a simple and easy-to-use cribbage scorekeeping system.

e Give players with reduced vision the ability to place the score-keeping system at
a comfortable and easy-to-see distance from their eyes.

e Keep the look and feel of cribbage by including a cribbage board that is similar to
commonly available cribbage boards.

e Make the entire system as compact, portable, and practical as possible.

There are limitations to this project which should be specified. This is not a complete
cribbage game. This project is meant to be a replacement for the board and pegs. This project is
not be designed to walk players through the gameplay. It is assumed players are familiar with
the rules of cribbage. A deck of cards is needed to play the game. Large-print playing cards can

be readily found and would be a perfect accompaniment to this project.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 3

Physical Description

The cribbage board is a device used to keep track of the scores of each player in a game
of cribbage. A player’s score can range from zero to 121. A standard modern cribbage board has
120 holes for each player, plus an additional hole for the winning score. These boards use
uniquely coloured pegs that fit into the holes to mark the score for each player. The cribbage
board for this project replaces the holes and pegs with coloured LEDs. The shape of the LED
cribbage board, which is similar to a traditional wooden board, is rectangular and relatively
thin. The layout of the score-marking LEDs, which is based on the layout of the holes in a
common modern-style board, is comparable to the shape of a paperclip. To enter the number
of points scored during gameplay, each player has a wireless controller. Each controller has
switches to enter points, buttons to confirm or cancel entries, and a button to view the current

score for both players. Scores are displayed on an LCD.

Cribbage Board Enclosure

The overall dimensions of the cribbage board enclosure are 261 mm long, 200 mm wide,
and 26.5 mm tall. The enclosure is made of two parts: the base and the top.

The base makes up the bottom and sides of the enclosure and is essentially hollow. It
provides a foundation for the PCBs, the battery holder, and the power switch. The base is 3D-
printed using polylactic acid filament. The bottom of the base provides access to the battery
compartment via a 62 mm by 35 mm opening. The battery compartment is closed by using a 61

mm long, 34 mm wide, and 2 mm thick panel that is fixed to the base with screws.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

The top of the enclosure is made of 2 mm thick transparent plexiglass that is cut to 254
mm long and 193 mm wide. The corners of the plexiglass are rounded to an arc with a 3 mm
radius. There is a shelf 3 mm in and 6 mm down from the top of the enclosure base which
provides support for the LED PCB and the plexiglass sheet, as shown in figure 1. The transparent

top allows the LEDs on the PCB to be visible while protecting the PCB from mechanical damage,

electrostatic discharge, and potential short circuits.

I |
f 6.00 mm

26.50 mm
i | |
15.50 mm

!

Figure 1. LED Enclosure Base - Corner Cut-away.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 5

Cribbage Board PCBs

There are two PCBs in the cribbage board, one larger than the other. The two PCBs are
electrically connected by straight-pin and receptacle headers and are mechanically connected

with screws and nylon standoffs. The larger PCB will be referred to as the LED PCB. The smaller

PCB will be referred to as the micro PCB.

Micro Printed Circuit Board

The micro PCB (shown in Figure 8) is 58.5 mm by 100 mm. There is an 8 mm by 8 mm
cut-out in one corner to fit around part of the base of the cribbage board enclosure. It is
populated with the microcontroller, the RF transceiver module, the radio antenna, the power
regulator, the battery connector, the in-circuit programmer header, and associated

components. The micro PCB is located beneath the LED PCB.

oc B -§
mo: 58 3 3.3 1@
| 2 i3 mpatsg
I P11 g0 2
E o= -.-Lu— =
s 5 §geil: &
m-e ¢ 2 ¥n gs § 6% >°
I 2 g3 ;—."uﬂ O% = .
‘z‘ EE gox &} & o
1 3: o ™ g
NI 58388°% : B
I— |IOEooo;s| g -
— | 2
=

]

Winning
44 " ED
Header

Figure 2. Micro Printed Circuit Board Layout.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 6

LED Printed Circuit Board

The LED PCB is 254 mm long by 204 mm wide. Each corner is rounded into an arc with a
radius of 3 mm. This PCB is populated with 241 score-marking LEDs, 16 port expanders that
drive the LEDs, and associated parts. The LED PCB top is visible when the cribbage board is fully
assembled. The LEDs are arranged in groups of five to help count the score. Figure 3 shows the

layout of the LED PCB, including the location of the micro PCB (shown by the dashed rectangle).

Figure 3. LED Printed Circuit Board Layout.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 7

Score-marking LEDs

The LEDs used to mark the scores are arranged in two rows, one row for each player.
Each row follows the shape of a paperclip. The case of each LED is 3.2 mm by 2.8 mm and
approximately 2 mm tall. LED lenses are “water clear”, flat, circles and have a diameter of 2.4
mm. The LED package type is a plastic leaded chip carrier package. In this package type, the
leads wrap around and under the case of the LED. This arrangement of the leads uses less PCB
space, which is an important factor in the design of the cribbage board. The design and
dimensions of the single-colour LEDs can be seen in Figure 4. All of the LEDs in the row that
includes the outermost LEDs emit green light and represent the score of player one. All of the
LEDs in the other row emit red light and represent the score of player two. The last LED, which
marks the winning score, is capable of emitting red, green, and blue (RGB) light. This LED will be
lit with the colour that corresponds to the winning player’s LED colour. The dimensions of the

RGB LED are the same as the single-colour LEDs.

3.20 mm—~
N]— _\
2.80 mm F 0.80 mm
1.75 mm
‘ { 1.10 mm
! -\
—DIA 2.40 mm

Figure 4. Score-marking LED.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Controller Enclosure

The enclosure for the controller is a light-weight, hollow box made of grey polystyrene.

The front of the enclosure has cut-outs to mount the switches and buttons. The front also has a

cut-out that the LCD fits through. The enclosure is 150 mm long, 120 mm tall, and 50 mm deep.

The back of the enclosure has a cut-out for the battery compartment. The top of the enclosure

has a cut-out for the power switch. The dimensions, in millimetres, for all of the cut-outs are

shown in Figure 5. There are labels printed above and/or below the switches and buttons to

identify the function of that device.

107.00 |

4—‘ 21.50

\ =1l SCORES 7
‘-— 23.50 —-‘ —l 17.50 ‘ —‘ 16.00 I—— 31.00 —‘

11.00 -: 10.80 -—.:

——‘ 15.70 ‘—— 31 ——|

21,

f=)

0

L

=

OFFJON |
!

Figure 5. Controller Enclosure Cut-outs.

/—~2xd|a 8

— —
11.00 _/

Y

11.3‘_7_ L_ 3200 —‘

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 9

LCD Module

The LCD module is 122 mm long by 44 mm wide. The LCD screen is 106 mm long by 35.8
mm wide. The screen extends 8.6 mm from the module PCB. The characters on the screen are
white, the background is blue, and the outline of the screen is black (see Figure 6). The LCD
module is mounted on nylon standoffs, which are screwed to the controller PCB, such that the

screen is flush with the front of the enclosure.

|

* PLEASE SELECT

DEEIT OR CEEDIT=

Figure 6. LCD Module.

Source: “NHD-0216SZ-NSW-BBW-33V3,” by Digi-Key Electronics. Retrieved on March 15, 2020
(https://media.digikey.com/Photos/Newhaven Display Photos/

MFG_nhd-0216sz-nsw-bbw-33v3.jpg)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 10

Rocker Switches

The two switches used to increase or decrease a player’s point count are rocker
switches (see Figure 7). One switch is used to increase or decrease the count by one point, the
other is used to increase or decrease the count by five points. The rocker switches are single-
pole, double-throw, momentary-off-momentary switch types. The switches are black plastic in
a black plastic housing. The housing snaps into the enclosure cut-out. The switch contacts are

terminated with 6.3 mm quick-connect spades, but can also be soldered.

Figure 7. Rocker Switch.

Source: “RB14DE1100,” by Digi-Key Electronics. Retrieved on March 15, 2020

(https://media.digikey.com/Photos/E-Switch%20Photos/RB14DE1100.jpg)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 11

Pushbuttons

There are three pushbuttons on the controller. All pushbuttons are the same except for
their colour. The button used to confirm an entry has a green actuator. The button used to
cancel an entry has a red actuator. The button used to view both players’ scores on the display
has a white actuator. Actuators are domed and are raised from the housing when not pressed.
Actuators and housings are made of nylon. Each button has a threaded housing that is mounted
to the front of the enclosure with a lock-washer and hex nut (see Figure 8). The contacts are
terminated with a solder joint. The buttons are single-pole, single-throw, off-momentary switch

types.

Figure 8. Pushbutton.

Source: “GPB556A05BR,” by Digi-Key Electronics. Retrieved on March 15, 2020

(https://media.digikey.com/Photos/CW Ind Photos/GPB556A05BR.jpg)

https://media.digikey.com/Photos/CW%20Ind%20Photos/GPB556A05BR.jpg

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 12

Power Switch
The power switches for the cribbage board and the controllers are single-pole, single-
throw, on-off slide switches (see Figure 9). These switches are snap-in, panel mounted. The

actuator extends 3.56 mm from the switch housing and has 2.29 mm of travel.

Figure 9. Power Switch.

Source: “G-107-SI-0005,” by Digi-Key Electronics. Retrieved on April 10, 2020

(https://media.digikey.com/photos/CW Ind Photos/G-107-SI-0005.jpg)

Wireless Controller PCB

The controller PCB is 127.5 mm by 100 mm. It is populated with the RF module, RF
antenna, microcontroller, voltage regulator, in-circuit programming header, and locking
headers that connect via wiring harnesses to the pushbuttons, rocker switches, power switch,

and LCD. The battery holder is mounted directly to the PCB in the lower-left corner, with the

https://media.digikey.com/photos/CW%20Ind%20Photos/G-107-SI-0005.jpg

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 13

solder lugs towards the right side of the PCB. The LCD module is mounted to the right side of

the PCB, with the bottom of the LCD screen toward the left side of the PCB. Sections of the top,
right side, and bottom have had all of the copper milled out, to keep the antenna ground plane
as close as possible to the manufacturer’s recommended size. The layout of the PCB is shown in

Figure 10.

o comormron @
n]
- Controler Version 2.0 o Mounting ¥

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Figure 10. Wireless Controller Printed Circuit Board Layout.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 14

Process Description
Scoring points during a cribbage game can happen at various stages of the game. In this
project, entering points can also happen at any stage of the game, but requires a few steps to
initialize the system. Once the system is initialized, players can use their controllers to enter
points and to view the current scores of both players. Once a game is over, the controller can

be used to start a new game.

RF Module Memory Structure and Command Interface

The HumPRO RF module stores configuration and status data in register files. Many of
these registers are stored in two types of memory: volatile and non-volatile. The non-volatile
memory retains its data after loss of power, while the volatile memory does not. The non-
volatile memory has a limited lifetime of 18,000 write-cycles (Linx Technologies, 2018, pp. 42-
44). For this reason, permanent configuration settings for this system (e.g. packet handling
options, addressing mode, bit rate, etc.) have been stored in non-volatile memory by the
project programmer. These settings should never need to be changed. Any other register-write

operations will be performed on volatile memory.

The RF Module command interface uses UART to communicate with the

microcontroller. It uses the CMD line to differentiate between commands and data to be

transmitted. The command format starts with a tag byte of OxFF, followed by a byte value that
specifies the length of the command field, and then the command field itself. The command

field contains the register address and, in the case of a write command, the value to be written

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 15

to the register. The manufacturer recommends converting command field byte values of 0x80
or greater to a two-byte escape sequence to avoid issues where the value may overlap the

UART packet tag. This is done using example code written and provided by Linx Technologies

(Linx Technologies, 2018, pp. 46-47). Command responses are indicated by a low CRESP line

and transmitted to the microcontroller’s UART. All successfully received commands are
indicated to the microcontroller by an ACK byte on the UART bus (followed by the register value

in the case of a read command).

Transmit Data Format

All data to be transmitted, will start out containing four bytes. The first byte will be the
cribbage-system command byte, the second byte will be the sending-device identifier byte, and
the last two bytes will be data-value bytes. There are six unigue command bytes, as shown in
Table 1. There are three sending-device identifier bytes: ‘1’ for player one, ‘2’ for player two,
and ‘C’ for the cribbage board. The data-value bytes will contain numerical values such as one
for a response of “yes” or zero for a response of “no” or 87 for a score update. The only time
the last data-value byte is necessary is when the cribbage board is sending both scores as a
response to a “scores” query from a controller. In this case, the first data-value byte will be the
score for player one and the last data-value byte will be the score for player two. The RF
module will assemble a packet around these four bytes with various identifiers, packet
information, and error checking values. Packet assembly is handled entirely within the module

and so will not be discussed in this report.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 16

Table 1

Command Bytes

Byte Value Command Use
‘R’ Ready Sending device is ready
‘v’ Error There is an error.
‘N’ New Game New game query or response.
‘s’ Scores Scores query or response.
‘v Update Update sending device’s score.
‘Q Quit The game is over. Stop accepting scores.

Communication Attempt Procedure

Each time a device in this system transmits a packet, it will follow a common procedure.

The sending device first raises the CMD line to the RF module. Next, the data bytes the

sending device wishes to transmit are written to the UART of the RF module. When the CMD

line is lowered, the RF module waits for, or hops to, an unused channel, and transmits the data
in an assembled packet. After transmitting the packet, the sending device will wait for an
acknowledgement (ACK) packet from the receiving device for up to 50 ms. If no ACK is received,
the sending device will retransmit the packet. The sending device will continue to attempt to
communicate until it receives an ACK or until 200 unacknowledged transmission attempts.

After 200 unsuccessful attempts, the system declares a communication failure. This failure is

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 17

indicated by the RF module taking the EX line high. The type of error is recorded in the
exception register in the RF module. If a controller fails to communicate, the error message “No
communication. Please restart” will display on the LCD. If this message is displayed, the player
must cycle power to the controller.

If the cribbage board fails to communicate with one controller, it will attempt to
communicate with the other controller. If this attempt is successful, the working controller will
display the message “Please restart other controller”. This message will continue to be
displayed until either the unresponsive controller is restarted or the cribbage board successfully
communicates with the unresponsive controller. If the cribbage board fails to communicate
with the second controller, the cribbage board will enter sleep mode. The cribbage board can
only wake from sleep mode if it is turned off and then on again. It should be noted that when a

device is restarted, it always begins the initialization procedure.

Initialization Procedure

When a controller is turned on, it will display the message “Please stand by” on the LCD.
The controller will then send a signal to the cribbage board to let the cribbage board know the
controller is ready. The cribbage board will also send a ready signal to the controller. The
controller then waits until it receives the next message from the cribbage board. The controller
will continue to display “Please stand by” on the LCD during this period. While in standby mode,
the controller buttons are not functional.

When the cribbage board is turned on, it first runs a sequence to turn on each LED, one

at a time. This sequence is meant to indicate the working status of the LEDs. Next, the winning

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 18

LED marker (score 121) will slowly pulse. This is an indicator that the cribbage board is turned
on and is working. The cribbage board then waits until it receives a signal from a controller.

If no signal is received within 60 seconds, the cribbage board microcontroller will go into
sleep mode, for 5 seconds, to reduce power usage. While in sleep mode, the winning LED
marker will no longer pulse. So long as no signals are received from the controllers, the
microcontroller will continue to periodically wake and sleep for up to 10 minutes. When the 10-
minute time limit is reached, the microcontroller will send the RF module to sleep, then put
itself to sleep. At this stage, it is assumed there is no game in progress, so the cribbage board
will not wake until power is cycled. This is done to prevent the batteries from draining.

If the cribbage board receives a signal from a controller before the 10-minute limit, the
cribbage board internally records the status of that controller, identified by a byte in the signal
data, and sends a signal back to the controller to let it know the cribbage board is ready. When
both controllers have been contacted, the cribbage board will check to see if there is a saved
game in the electrically erasable, programmable, read-only memory (EEPROM).

If there is a saved game, the cribbage board will turn on the score-marking LEDs to
indicate the scores in the saved game. The board will then send a signal to player one to choose
whether to continue the saved game or start a new game. Player one and player two
designations are pre-programmed and are distinguished by the unique network address of each
controller, as well as in the identification byte in each command signal. The controllers are also
marked so players know which controller is which.

If player one’s controller receives the signal to choose whether to continue a saved

game or start a new one, the message “Start new game?” is displayed on the LCD. Player one

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 19

will press the green “Yes” button to start a new game, or the red “No” button to continue the
saved game. The controller then sends a signal to the cribbage board, indicating player one’s
choice.

If the cribbage board receives a response to continue a saved game, it will set the
current scores to the scores that were saved in EEPROM. If the cribbage board receives a
response to start a new game, then the board resets the scores to zero and removes the saved
game from EEPROM. After setting the scores, the board will send a signal to each controller,

one at a time, with the current scores. The system is now ready for regular gameplay.

Controlling the Score-Marking LEDs
Each score-marking LED, except for the “Finish” LED, is connected to an output pin of a

16-output port expander. All of player one’s LEDs are connected to port expanders that are

enabled by the CS1 line, and all of player two’s LEDs are connected to port expanders that are

enabled by the CS2 line. The port expanders are configured with hardware-biased addresses

between zero and eight, such that the port expander with hardware address zero is connected
to the first set of 16 LEDs, the port expander with hardware address one is connected to the

second set of 16 LEDs, and so on. In this way, player one’s score 53 LED is turned on by taking

the CS1 line low and sending two bytes on the SPI bus addressed to hardware address four.

Addressing the Port Expanders
To determine which port expander address to use, a function called get_port_exp_addr

is used. This function takes a score between one and 120 and divides it by 16. It then subtracts

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 20

i, to account for the first LED being one instead of zero. Finally, the function truncates the

value to an integer which is the correct hardware address for the score.

Generating the Output Bytes

Only one LED per player is turned on at a time. This means that the two bytes we send
to a port expander, to turn on an LED, is made up of all zeros except for one bit. To generate
the correct two bytes, the score is “translated” into an integer value (which contains two
bytes). First, a bit position is calculated by subtracting the score by 16 times the port expander
address. Then the two-byte translated value is created by taking an integer set to zero and
setting the bit that is located at the calculated bit position (minus one because the positions
start at zero). This two-byte value is then split into two separate bytes.

For player one port expanders, the two bytes are written to the port expander such that
the least significant byte is written to PORTA and the most significant byte is written to PORTB.
Player two’s port expanders are installed in reverse so that the mirror-image bytes (i.e. if a byte
started as 0100, the mirror image would be 0010) are written to the port expander with the
least significant byte written to PORTB and the most significant byte written to PORTA. The

correct LED is turned on when the port expander latches the outputs.

Regular Gameplay
When a controller first receives the current scores, it is an indication that both

controllers have communicated successfully with the cribbage board and either a new game or

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 21

saved game can proceed. The controller will then internally store the current scores. Next, the
message “Enter points” will appear on the top line of the LCD and the message “Yes to confirm”
will appear on the bottom line of the LCD.

When the player scores points during gameplay, the player will enter the points scored
by first using the “+1” or “+5” buttons. The number of points being entered will be displayed on
the top line of the LCD to the right of the “Enter points:” message. Each time a player presses
“+1” the number of points being entered is increased by one point. Each time a player presses
“+5” the number of points being entered is increased by five points. If the player accidentally
increases the number of points beyond the actual number of points they scored, they can
correct the number by using the “-1” and “-5” buttons. These buttons work the same way as
the “+1” and “+5” buttons, but decrease the number of points by the corresponding value. In
cribbage, the highest number of points that can be scored at one time is 29. For that reason,
the controller limits the allowable points being entered to between 0 and 29.

Once the player has set the correct number of points to be entered, they can press the
green “Yes” button to confirm their entry. Although it is not specified on the LCD screen, due to
limitations in the number of characters that can be displayed, the player can also press the red
“No” button to reset the number of points being entered to zero. When the green “Yes” button
is pressed, the number of points that were entered are sent to the cribbage board. When the
cribbage board receives a signal containing points scored, it increases the current score of the
player who sent the signal. The cribbage board will also store the updated score in EEPROM so

that the game can be continued if the board is turned off before the game is over.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 22

At any time during regular gameplay, a player may press the white “Scores” button.
When this button is pressed, a signal is sent to the cribbage board requesting the current
scores. Once the board receives the request, it sends the score of each player to the requesting
controller. When the controller receives the current scores, it stores those values. The
controller then displays the message “Player 1: xxx” on the top line of the LCD, and “Player 2:
yyy” on the bottom line - where xxx and yyy are the current scores of players one and two,
respectively. The controller leaves the current scores on the LCD for ten seconds or until the
player presses any button other than the white button. If the player has already started
entering points, has not yet pressed the green button to confirm the entry, then presses the
white button to view the current scores, the number of points that were being entered is still
stored and will be displayed once the current scores are no longer displayed.

When a player reaches 121 points, that player’s controller will display “You win!” on the
top line of the LCD. The controller will send the points as usual to the cribbage board. When the
cribbage board sees the winning score, it will send a signal to the other controller to stop
accepting scores. If the losing player’s score is higher than 90, their controller will display the
message “Game over” on the top line of the LCD. If the losing player’s score is 90 or less, their
controller will display the message “Skunked!” on the top line of the LCD. At this point, neither
controller will accept score entries. The cribbage board will now turn on each of the winning
player’s LEDs, in sequence, one at a time. The winning LED score marker will also be turned on
with the same colour as the winning player’s LEDs. Player one’s controller will now display the

message “Start new game?” on the bottom line of the LCD. Player one can choose to start a

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 23

new game by pressing the green “Yes” button. If the players are finished using the system, they

will turn off both controllers and the cribbage board.

Process Summary

To keep scores using this system, the cribbage board and both controllers must be
turned on and must be able to communicate. Once the system is initialized, the players can
enter any points scored by using the score increasing and decreasing buttons and confirm or
cancel their entry with the green and red buttons, respectively. Players can also view the scores
of both players by pressing the white button. Once the game is over, a new game can be

started or the system can be turned off.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 24

Instructions
Before You Begin
This system is designed to keep score for a two-player game of cribbage. Included are
the LED cribbage board and two wireless controllers. The rules of cribbage are beyond the

scope of this report and it is assumed you already have the knowledge to play the game.

Required Materials
e Adeck of 52 playing cards. To aide players with reduced vision, the cards should be large
print and/or low vision cards.

e Six AA batteries. Two batteries for each controller and two batteries for the cribbage

board.

Caution: Ensure the batteries are installed correctly in each of the three parts of this
system (two controllers and one LED cribbage board) before turning the parts on. The
system will not function properly and may be damaged if the batteries are installed

incorrectly.

Note: The controllers and the cribbage board will be communicating with each other using
916 MHz radio frequency. This system is designed to be played with the cribbage board
and both controllers in the same room. For maximum performance, the controllers should
be within sight of the cribbage board. If a controller and the cribbage board are too far

apart, or there is significant interference, devices may not be able to communicate.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 25

How to Use

1. Turn on the system. Slide the power switch to the “On” setting on the two controllers
and the cribbage board. You will see the message “Please Standby” displayed on each
controller. The cribbage board will turn on each LED in sequence, and the “Finish” LED
marker (score 121) will pulse. The cribbage board will then turn on the LEDs that
indicate the score of a previously saved game, or, if there is no saved game, only the
“Finish” LED marker will continue to pulse.

2. Continue a saved game or start a new game. If there is a saved game, player one’s
controller will ask if the players would like to start a new game. Press the green “Yes”
button to start a new game, or press the red “No” button to continue the saved game.

3. Begin the cribbage game. The game that was in progress may continue or a new
cribbage game may begin. Deal the cards, if necessary, and follow the normal rules of
cribbage.

4. Enter your points. Any time you score points in the game, enter the number of points
on your controller by using the switches on the left. The points being entered will be
shown on the top line of your controller’s display. The switches operate as follows:

o Switch on the left:
= Pressing the top, labelled “+1”, will increase the number of points being
entered by one.
= Pressing the bottom, labelled “-1”, will decrease the number of points
being entered by one.

o Switch on the right:

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 26

= Pressing the top, labelled “+5”, will increase the number of points being
entered by five.

= Pressing the bottom, labelled “-5”, will decrease the number of points
being entered by five.

5. Confirm your points. When your display shows the correct number of points to be
entered, press the green “Yes” button to confirm the entry. The cribbage board will turn
off the previous score marking LED and turn on the new one.

6. Check the scores. At any point in the game, press the white “SCORES” button to view
the scores of both players. After pressing the button, your display will show “Player 1:
xxx” on the top line and “Player 2: yyy” on the bottom line - where xxx and yyy are the
current scores of players one and two, respectively. The scores will remain on the

display for 30 seconds or until you press another button.

Note: If you have to postpone the end of the game, simply turn off the controllers and the
cribbage board. The next time you turned on the system, you will be given the option to

continue the game from where you left off.

7. Finish the game. When a player reaches the “Finish” score of 121 points, that player’s
controller will show “You win!” on the top line of the display. The losing player’s
controller will show either “Game over” or “Skunked” on the top line of the display. The
cribbage board will turn on each of the winning player’s LEDs in sequence and the

“Finish” score marker will turn on, in the colour of the winning player’s LEDs.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 27

8. Start a new game or turn off the system. Once the game is over, player one’s controller
will show “Start new game?” on the bottom line of the display. Press the green “Yes”
button to reset the game. The red “No” button has no effect. The white “SCORES”
button will still display the current scores of both players for up to 30 seconds, as
before. If you do not want to start a new game, both controllers and the cribbage board

should be turned off, to extend the life of the batteries.

Troubleshooting

e Many of these problems may be solved by observing the cautionary notes above.

e If the cribbage board’s power switch is turned on, but the board is unresponsive, try the
following possible solutions in order:

o Try turning the cribbage board off and back on again.
o Try replacing the batteries (ensure the batteries are installed correctly).

e If one of the controllers continually shows the message “Please Standby”, this indicates
the controller is unable to communicate with the cribbage board. Please try turning the
cribbage board off and then on again.

e If one of the controllers shows the message “Please restart other controller”, this
indicates the cribbage board is unable to communicate with the other controller. Turn
the other controller off and then on again.

e If one of the controllers shows the message “No communication. Please restart”, it
indicates that the controller is unable to communicate with the cribbage board. First, try
turning that controller off and then on again. If the problem occurs again, try turning the

cribbage board off and then on again.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 28

Investigation and Analysis

RF Transceiver Module

There are many radio technologies available that could be used for this project. Some
widely available options include Bluetooth/Bluetooth Low Energy (BLE), Zigbee, WiFi, or generic
Industrial, Scientific, and Medial (ISM) band radios. Analyzing the pros and cons of each of these
technologies yielded the following results.

Bluetooth and BLE were both removed from the list of possible choices early due to the
complexity of the Bluetooth standard and well-known issues with connectivity (Fox, 2018). Due
to the long-range and extra security features of WiFi, this technology inherently uses more
power than the other options (Sattel, 2016), which would negatively affect the battery life of
the project. The Zigbee protocol was a good option as it offered a low-power, robust, and
relatively low-complexity choice (Jain, 2014, pp. 3-4). Ultimately, to simplify development, it
was decided that a complex protocol, like Zigbee, should be avoided.

In choosing a specific ISM-band radio module, the following was considered:

1. Datasheet quality/detail

2. Features

3. Ease of use (development time)
4. Cost

5. Availability

Summaries of three readily-available modules, based on these five criteria, are found in

Table 2.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Table 2

RF Module Comparison

29

Criteria RFM75-S RFM69HCW HUM-900-PRO-CAS
Datasheet -Generally, well-written -Well-written -Very well-written
-State diagrams -State diagrams -Register map
-Register map -Register map -Functions explicitly
detailed
Features -Embedded packet -Advanced packet -Auto packet generation
processing processing -Frequency hopping
-Auto -Auto transmission and -Collision Avoidance
re-transmission reception -Assured delivery
-Low current mode -Low current mode
Ease of use -Confusing datasheet. -Packets automatically -Simple configuration
-Complex Configuration processed -Simple UART data
-Packet generation is -Data is written to or stream
relatively easy. read from FIFO queue. -Auto transmission and
-No frequency hopping -Frequency hopping is reception.
procedure provided. handled manually.
Cost $2.32 per module $5.95 $37.81
Availability 152 (12-wk lead time) 140 (2-wk lead time) 169 (6-wk lead time)

It was tempting to choose a low-cost option, but the simplicity of the HumPRO module

interface meant a significant reduction in software development time. Also, the HumPRO 900

series (shown in Figure 2):

- Uses frequency hopping spread spectrum (FHSS) technology to minimize potential

interference (Linx Technologies, 2018, p. 22).

- Uses carrier sense multiple access (CSMA) to reduce collisions on the network (Linx

Technologies, 2018, p. 32).

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 30

- Can be programmed to use explicit packet transmission, which allows for control
over when packets are sent and also the processing of received packets (Linx
Technologies, 2018, pp. 24-28).

- Handles acknowledgements and uses assured delivery techniques that reduce the

requirements of software in the Microcontroller (Linx Technologies, 2018, p. 21).

0.812"
(20.62)
- 0.271"
ous: (6.88)
(11.43) O V.
) 0.078'L.]
| (1.98) 0.195
e (4.96)
0.116 J [
(2'95) N NININENENENENENEEE |

Figure 11. RF Transceiver Module.

Source: HumPRO Series 900MHz RF Transceiver Module Data Guide, by Linx Technologies, 2018.

(https://linxtechnologies.com/wp/wp-content/uploads/hum-900-pro.pdf).

Because the radio communication and packet-handling are implemented internally in
the RF module, two communicating devices are, from their perspective, connected by a physical
serial data line. The module connects to the antenna without the need for a cable assembly,
which reduces the cost and complexity of assembly. This module has the added benefit of being

pre-certified by Industry Canada, which would fast-track production.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 31

It was the simplicity of the protocol, the available data transfer reliability techniques and
the thoroughness and quality of the datasheet and application notes that led to the decision to

use this technology (over Zigbee) and this module over the less-expensive options.

Antenna Considerations

The RF antenna being used in this project (i.e. ANT-916-SP, shown in figure 3) is a
quarter-wave planar antenna. This antenna was chosen for two reasons. First, it is one of a
small selection of antennas approved by Industry Canada for use with the certified HumPRO RF
transceiver (Linx Technologies, 2018, pp. 98-99). This means that the combination of the RF
module and antenna, following the design criteria specified by the manufacturer, maintains the
Industry Canada certification. The second reason this antenna was chosen was that it allows the
antenna to be embedded in an enclosure (as opposed to an external antenna) while minimizing
the size of the enclosure.

As a quarter-wave planar antenna, the chip itself is only half of the antenna structure.
The other half of the antenna is the ground plane on the circuit board. The manufacturer’s
recommended design (Linx Technologies, 2017b, p.8) specifies a ground plane length of 84.07
mm, starting from the centre of the antenna pads and extending away from the antenna. The
ground plane should also be 38.86 mm wide, with the antenna approximately centred along the
width. The ground plane should be located on the bottom layer of a two-layer PCB. Any change
in the size of the ground plane will shift the resonant frequency of the antenna, but the shift is
more significant if the ground plane is smaller than the recommended size (Linx Technologies,

2017b, p. 8).

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 32

27.94 mm
< (1.10" >
Splatch™
AntennakFacloc

ANT-916-SP

1.5 mm l<—> —> |

(0.06") 5.1 mm 1.27 mm

(0.20") (0.05")

Figure 12. Radio Antenna.

Source: ANT-916-SP Data Sheet, by Linx Technologies, 2017.

(https://www.linxtechnologies.com/wp/wp-content/uploads/ant-916-sp.pdf)

The wireless controller PCB and the micro PCB have both been designed such that the
ground plane is not smaller than the recommended size. The ground plane on each PCB is
slightly larger along the width, but only as required to fit all of their components.

Another consideration in the ground plane design is that the ideal ground plane has no
traces, vias, or through-hole components (Linx Technologies, 2012, p. 13). Where the ground
plane must be “cut-up” by these obstructions, it is recommended they be run in a path that is
parallel to the path from the antenna to the battery connector. Since the controller and micro
PCBs both require vias, through-hole components, and traces running on the bottom layer, an
attempt has been made to follow these recommended guidelines.

This antenna also requires an impedance-matching 50-ohm transmission line. The
transmission line for this project is in the form of a microstrip with a length of 10.45 mm and a

width 1.7 mm, calculated using the specifications of the PCB material provided in the ESET labs

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 33

(i.e. Isola FR402). If these PCBs were manufactured using a different material, the width of the
microstrip should be recalculated to attain the ideal impedance.

The final consideration for the PCB designs, as far as the antenna is concerned, is to
remove all copper “under the antenna or to its sides on any layer of the board.” (Linx
Technologies, 2017b, p. 8). Following this recommendation, a keep-out area is placed across
the PCB, from the centre of the antenna pads to the top edge of the PCB, so that all copper on

both sides of the PCB will be milled out.

Driving the LEDs

This project uses 241 LEDs to mark the scores of two cribbage players. While it was
never determined if a single microcontroller with sufficient general-purpose input/output
(GPIO) pin count could be easily obtained, it was also never considered a practical option. In
determining the best way to drive the LEDs with minimal GPIO pins, the options came down to
arranging the LED wiring system in a matrix or using integrated circuits (ICs) to convert a serial
output from the microcontroller into parallel outputs. The matrix arrangement offers the
lowest-cost option as it would be possible to drive 240 LEDs, without any additional
components, using 31 GPIO pins, if arranged in 15 rows and 16 columns. However, it would be
difficult to run the traces because of the physical arrangement of the LEDs (two rows of 120
LEDs).

The method chosen was to use MCP23S17 port expanders. These port expanders have
16-outputs and use serial peripheral interface (SPI) for the input. To drive 240 LEDs, a minimum

of 15 of these port expanders is necessary. In this project, because of the physical arrangement

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 34

of the LEDs, it is easier to use eight port expanders per row for a total of 16. Multiple devices
can share a single SPI bus, but normally each requires a unique enable line from the
microcontroller, which would increase the number of GPIO pins by 16. MCP23S17 port
expanders have hardware address pins, which means that eight ICs can be connected to a single
enable line. In this way, all 16 port expanders can be run using a single SPI bus and two enable

lines. Therefore, all of the LEDs could be driven with only four GPIO pins.

Input and Output Devices
Many hours were spent searching for buttons, switches, or keypads, that met all of the

ideal design requirements:

Large actuators, without being comically large

Colour-coded, where possible

Labelled with large print, high contrast lettering, in a professional manner

Intuitive as to the function and method of use

Additionally, almost equal time was spent searching for a display for the controllers that

offered:

Large characters

e High-contrast

e Low power-usage

e A resolution that allowed for easy-to-understand instructions and information to be

printed

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 35

To start, | made a list of the most common styles of input devices. | also researched LCD vs
LED and character vs graphic displays. LED and graphic displays were both removed from
consideration due to the power requirements of available devices. Next, | assembled an
informal product research panel made up of a group of three potential customers with mixed
visual abilities. Panel members were shown a variety of different input and output devices and
asked for their opinions on the level of visibility of each device. Where appropriate, panel
members were asked pointed questions about how they would assume each input device
would function if they were not given instructions. Additionally, panel members were shown a
few samples of messages that could be displayed on the output devices and asked to explain

what they thought those messages meant.

Display Options

When users were shown various LCD/LED character displays they were asked to rank
the readability of the text, considering the colour and contrast of the text on the background.
The results are shown in Table 2. It was unanimously decided that any clear font was
acceptable, and the larger the characters, the better. When considering the clarity of the
meaning of messages that could be displayed, the options were based on the characters per
line, and lines per display, of available devices. The options were 16 or 20 characters per line
and two or four lines on a display. Since the number of characters in a line limits the size and
number of words that can be printed, messages have to be concise (at best) or abbreviated (at
worst). Panel members had trouble understanding abbreviated messages (e.g. “R: 25 G: 15”

meaning the score of the player with red LEDs is 25 and the score of the player with green LEDs

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 36

is 15). Members were also confused by mixing queries and results (e.g. “Enter score:” on the
top line of a two-line display, and “Red: 25 Green: 15” on the bottom line of the display). This
seemed to point to a four-line display as the best option, since more text could be displayed at
one time. However, available four-line displays used very small characters, which panel
members were against. In the end, members decided that with proper instructions, concise
messages would be acceptable and abbreviated messages could be allowed but should be kept

to a minimum.

Table 3

Ranking of Display Colours

Panel Members

Display Colours Very Low Vision Low Vision Average Vision
White on Black Worst Better Better
White on Blue Best Good Good
Green on Black Poor Best Best
Black on Green Better Worst Good
Black on Grey Poor Good Good

The final decision was a 16x2 or 20x2 display with white-on-blue text in a clear font. The
best option with a 3.3 V supply (to match the rest of the devices on the controller) was the New

Haven Display NHD-0216SZ-NSW-BBW-33V3.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 37

Input Options

At the beginning of the design process, the only suitable options that I could find for
input devices were pushbuttons, rocker switches, joysticks, and keypads. Panel members were
shown a few examples of each type of input device and a few possible layout options. They
were asked if the function of each input device was intuitive and if they appeared to be easy to
use.

The unanimous winner was a keypad with labelled numerical keys and keys labelled
and/or colour-coded for functions such as “Enter” and “Cancel”. A joystick of sufficient size was
also acceptable so long as its function was well labelled. Keys or buttons that increase or
decrease the number of points being entered by one or five were also acceptable, but needed
to be clearly marked.

After many hours searching for a keypad that was the right size, with the right number
of keys, with a configurable legend, and within budget, it was decided that a manufactured
keypad was not an option.

| also did not find a joystick that would keep the controller to a reasonable size and also
had a pleasant tactile quality. In the end, | decided to try to get the same essential function of a
joystick out of two rocker switches (which were lower-profile than most joysticks and felt better
to use than the lowest-profile joysticks). | then decided to get the same essential function of the
keypad “Enter” and “Cancel” buttons out of simple pushbuttons. | also added a separate

pushbutton to be used to request the current scores.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 38

Recommendations

Physical Size of the Cribbage Board

One of the goals of this project was to ensure that using this system looks and feels, as
closely as possible, like playing a traditional game of cribbage. As part of that goal, it was hoped
that the LED cribbage board would have the same dimensions and appearance as a traditional
wooden cribbage board. While the layout of the LEDs is similar to the layout of the holes in a
wooden board, the overall size and appearance could have more closely resembled a traditional
board. One of the obstacles to achieving this goal is the inability of Saskatchewan Polytechnic
equipment to create plated vias. Non-plated vias require a technologist to manually solder a
lead to each of the PCB layers. The cribbage board presented in this project already has nearly
200 vias, which, it is estimated, would take a skilled technologist more than one man-hour to
complete.

It is recommended that using equipment that can create plated vias would allow for
even more vias to be placed, without creating additional work. If the number of vias was
increased, many, if not all, of the port expanders and resistors on the cribbage board could be
placed on the bottom layer of the PCB. This would allow for a more compact PCB, which would
more closely match the shape and size of a traditional cribbage board. Having fewer
components on the top layer would also make the appearance of the board more like a

traditional board.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 39

Input devices

The decision to use the rocker switches and pushbuttons, as controller input devices,
was based on research, design, and practicality. It was also a decision made partly because |
was running out of time to make a choice. Another option presented itself during a discussion
with project managers about the poor availability of good, inexpensive input devices. Project
manager, Michael Lasante, mentioned that it would be possible to manufacture capacitive
touch buttons directly on a PCB, controlled by built-in peripherals of the PIC microcontroller |
was already using. | think this would be the best choice for the controller input device because
it could be designed to the exact size, shape, and functionality | want. Ideally, the buttons
would be arranged like a modified keypad, with numerical buttons, an “Enter” button, a
“Cancel” button, and a “Scores” button. Each button would have a custom-made label to be

located directly on the button.

A More Finished Look

The choice to cover the PCB with a transparent top isn’t ideal. While the PCB does look
interesting, | feel like the plexiglass top is somewhat unprofessional. While making the second
version of this project, | would like to look into designing a cover that has holes matching the
locations of the LEDs and using light pipes to bring the light from the LEDs to the top. Because
the LEDs have traces on each side, it is not practical to print row markers or group markers with
the silkscreen. Additionally, the numerical scores must be printed in a relatively small font. With
the designed top, all of these markers could be easily added and the scores could be increased

in size.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

References

Digi-Key Electronics. NHD-02165Z-NSW-BBW-33V3. Retrieved on March 15, 2020, from
https://media.digikey.com/Photos/Newhaven Display Photos/
MFG_nhd-0216sz-nsw-bbw-33v3.jpg

Digi-Key Electronics. GRB260G101BBNN. Retrieved on March 15, 2020, from
https://media.digikey.com/Photos/CW Ind Photos/GRB260G101BBNN.jpg

Digi-Key Electronics. GPB556A05BR. Retrieved on March 15, 2020, from
https://media.digikey.com/Photos/CW Ind Photos/GPB556A05BR.jpg

Fox, A. (2018, December 25). How does Bluetooth work and why is it so terrible?
https://www.maketecheasier.com/how-does-bluetooth-work/

Jain, R. (2014). Wireless protocols for internet of things: Part Il — Zigbee.
https://www.cse.wustl.edu/~jain/cse574-14/ftp/j_13zgb.pdf

Linx Technologies. (2018). HumPRO series 900MHz RF transceiver module data guide.
https://linxtechnologies.com/wp/wp-content/uploads/hum-900-pro.pdf

Linx Technologies. (2017a). ANT-916-SP data sheet. https://www.linxtechnologies.com/wp/
wp-content/uploads/ant-916-sp.pdf

Linx Technologies. (2017b). Application note AN-00502: Proper PCB design for embedded
antennas. https://linxtechnologies.com/wp/wp-content/uploads/an-00502.pdf

Linx Technologies. (2012). Application note AN-00501: Understanding antenna specifications

and operation. https://linxtechnologies.com/wp/wp-content/uploads/an-00501.pdf

40

Running head: PHYSICAL DESCRIPTION 41

Mark, C. (2018, July 4). The beginner’s guide to the greatest pastimes: Cribbage. CBC.
https://www.cbc.ca/life/culture/the-beginner-s-guide-to-the-greatest-pastimes-
cribbage-1.4733258

Sattel, S. (2016). WiFi vs. Bluetooth: Wireless electronics basics.
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-

basics/

https://www.cbc.ca/life/culture/the-beginner-s-guide-to-the-greatest-pastimes-cribbage-1.4733258
https://www.cbc.ca/life/culture/the-beginner-s-guide-to-the-greatest-pastimes-cribbage-1.4733258
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 42

Appendix A — Controller Code

All code below is based on the initial prototype with some untested alterations.

main.c

/***
* Cribbage for People with Reduced Vision

Controller

Author: Andrew Ashton

April, 2020

This RF Module's Device Serial Number (DSN address) is:
0x04,00,07,31

**/

#include "includes.h"

unsigned char pl score = 0, p2 score = 0; // player 1 & player 2 scores
unsigned char new _points = 0; // new points being entered
unsigned char game over = 0;

unsigned char datal[7]; // command to send to crib board
unsigned char cmd type;

int rx buffer num = 0;

char rx buffer[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char volatile check buttons, cmd response = 0;
unsigned char volatile is packet = 0, check for packet = 0;

enum putch stream stream;

void main (void)

{
portinit () ;
spi_init();
portexpinit () ;
lcd init ()
uart _init();
timer0 _init();
RCONbits.IPEN = 1;
INTCONbits.GIEH
INTCONbits.GIEL
stream = LCD;
send cmd 2 1lcd(0x80);
printf("Please Stand by");
__delay ms(2000); // 2 sec delay to give RF module time to "boot up"
rf init();
stream = UART;
transmit ("R100"); // send ready command to crib board
while (1)
{

1;
1;

if (check buttons)
pushbuttons() ;

if (check for packet)
rf receive();

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 43

rfmodule.c

/***

* Cribbage for People with Reduced Vision

* Controller

* HUM 900 Pro RF Module from Linx Technologies
* Andrew Ashton

* April, 2020

*

**/

* RF Module Packet format:
* Header: Tag, header length (in bytes), frame type, hop id, sequence,
Destination DSN address, Source DSN, data length (in bytes)
Data: Tag, data length (in bytes), data bytes
*/

#include "includes.h"

extern unsigned char pl score, p2 score;

extern unsigned char volatile cmd response, is packet, check for packet;
extern unsigned char rx buffer[];

extern unsigned char cmd type, game over;

extern enum putch stream stream;

/*

* RF Module initialization

* Destination address is set to the DSN address of the module on the LED
board

* Packet Options:

* - Transmit - All bytes held until triggered by /CMD pin
* - Transmit when /CMD is lowered
* - Receive - Will be checked periodically.
* Retrieves one packet from buffer at a time on command.
* - CTS is used for flow control and /CRESP is used as a status
* pin.
*/
void rf init(void)

{

unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char results[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char cmd len = 0, reg addr;

unsigned char n = 0;

//write to reg values

cmd type = WRITE;

RF CMD = 0;

// write DSN address of cribbage board module into destination address
regs

cmd len = HumProWrite(cmd, RF _DESTDSN3, RF MODULEB DSN3) ;

send rf command(cmd, cmd len);

while(!cmd response);

cmd response = 0;

cmd len = HumProWrite(cmd, RF _DESTDSN2, RF MODULEB DSN2) ;

send rf command(cmd, cmd len);

while(!cmd response);

cmd response = 0;

cmd len = HumProWrite(cmd, RF DESTDSN1, RF MODULEB DSN1) ;

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 44

pin

rea
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
}

/*

*

of

*

4

*
*
*
*
*/

voi

{

send rf command(cmd, cmd len);

while(!cmd response);

cmd_response = 0;

cmd len = HumProWrite(cmd, RF DESTDSNO, RF MODULEB DSNO) ;
send rf command(cmd, cmd len);

while (!cmd response);

cmd response = 0;

/***/

//This one is to the non-volatile memory... should be one time operation
cmd len = HumProWrite(cmd, RF_PKTOPT, 0x07);

send rf command(cmd, cmd len);

while(!cmd response);

cmd response = 0;
/***/

__delay ms(TEN BIT TIMES); // delay for 10 bit times before setting /CMD
//RF_CMD = 1;

//read reg values
// following commented code replace by result =
d rf register(reg addr)
cmd type = READ;
reg_addr = 0x1D;
while (reg addr <= 0x20)
{
cmd len = HumProRead(cmd, reg addr);
send rf command(cmd, cmd len);

while (!cmd response);

Nop () ;

if (rx _buffer[0] == ACK)

{
results[n] = rx buffer[2];
n++;

reg_addr++;

}

else

{

// result of command was nack!

}

cmd response = 0;

This function sends an encoded command to the RF module to read the value
a register or write a value to a register. The encoded command will be 3-
bytes long for a read command or 4-6 bytes long for a write command.
Responses will be via UART.

input: cmd - char array - the command bytes

cmd len - char - the number of bytes in the command

d send rf command(unsigned char *cmd, unsigned char cmd len)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 45

int n;
//RF_CMD = 0;
// CONVERT TO PRINTF - WATCH FOR '\0' NEEDED ON END OF STRING?
for (n = 0; n < cmd len; n++)
{
TXREG2 = cmd[n]; // send data
while (!'PIR3bits.TX2IF); // check UART buffer
}
// _delay ms(TEN BIT TIMES); // 10 bit time delay before raising /CMD pin
//RF_CMD = 1; // only need to raise /CMD when specifically needed
}

unsigned char read rf register(unsigned char reg addr)
{
unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char result;
unsigned char cmd len = 0;
cmd response = 0;
RF CMD = 0;
cmd _type = READ;
cmd len = HumProRead(cmd, reg addr);
send rf command(unsigned char *cmd, unsigned char cmd len);
while ('cmd response);
if (rx buffer[0] == ACK)
result = rx buffer[2];
else
{
// UART error - do something
}
cmd response = 0;
return result;

}

void write rf register(unsigned char reg addr, unsigned char reg value)
{

unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char cmd len = 0;

rx _buffer[0] = 0x00; // using this instead of /CRESP because /CRESP goes

// high too early

cmd response = 0;

RF CMD = 0;

cmd type = WRITE;

cmd len = HumProWrite(cmd, reg addr, reg value);

send rf command(cmd, cmd len);

if (rx buffer[0] !'= ACK)

{

// UART error, do something
}

* RF Transmit routine
* This function sends data to the playing board.
* Input: Data to be sent
*/
void transmit (unsigned char data)

{

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 46

unsigned char result;

RF CMD = 1;

stream = UART;

printf (data) ;

__delay ms(1);

RF CMD = 0;

while (!RF BE); // transmit buffer empty?

if (RF_EX) // exception triggered?

{

result = read rf register(RF_EEXFLAGO) ;
if (testbit(result, EX NORFACK)) // max number of retries reached
no_comm() ;

}

// olf send RF function
//void send rf data(unsigned char data)

/74
// RF_CMD = 1;
// stream = UART;
// while (!PIR3bits.TX2IF);
// TXREG2 = data;
// __delay ms(1);
// RF CMD = 0;
//}
/*
* RF Receive routine
* This function sets up the RF module to send a received packet from the
* receive buffer out on the UART. The function is run periodically. The
* sequence of events is as follows:
* - Check if the rx packet flag of the EEXFLAGO register in the module is
set
* - If it is not set, return to the calling function
* - If it is set, write a get packet data command to the CMD register of
the
* module and collect the magical ACK response.
* - Wait for the /CRESP pin go high
* - Raise the /CMD pin
* - Wait for the /CRESP pin to lower. When this happens, it means the
* complete packet has been sent on the UART. UART reception is handled
* in the ISR.
* - Double check we got all the data we were looking for.
* - If all is well, lower /CMD to complete the RX transfer cycle.
*/

void rf receive(void)
{
unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char results[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char EEXFLAGl, cmd len = 0;
//read EEXFLAGl register to see if there is a packet in the receive
buffer
EEXFLAGl = read rf register (RF_EEXFLAGI) ;
rx _buffer[l] = 0x00;
Nop () ;
if (testbit (EEXFLAGl, EX RXWAIT) == 0) // no packet waiting
return;

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

// 1if we made it this far, there is a packet waiting

// INTCONbits.GIEL = 0; <- already in write rf register

write rf register (RF_REG CMD, GETPD);

while ('RF CRESP); // wait for signal that module is ready

RF CMD = 1; // trigger UART transfer cycle (dealt with in ISR)
while (RF _CRESP); // wait for signal that module is finished
if (!is_packet)

{
// UART data does not match packet definition
// do something and... exit... I guess?
}
else // successfully received UART data
{
switch (rx buffer[2])
{
case 'R': // cribbage board is ready
{
// set status flag for crib board
break;
}
case 'E': // cribbage board can't talk to other controller
{
// stop collecting points
// display "Please restart" on top line of LCD
// and display "other controller" on bottom line
break;
}
case 'N': // cribbage board wants to know "new game?"
{
// Display "Continue game?" on top line of LCD
// Display a blank bottom line.
// set flag to wait for yes or no response
break;
}
case 'S': // cribbage board has sent both scores
{
if (PLAYER_NUM = 1)
{
if (rx buffer[4] '= pl score)
{
// crib board has different player 1 score than
// this controller! Do something about it!
}
p2 score = rx buffer[5]; // update local player 2 score
}
else
{
if (rx buffer[5] '= p2 score)
{
// crib board has different player 2 score than
// this controller! Do something about it!
}
pl score = rx buffer[4]; // update local player 1 score
}
//display "Player 1: " and pl score on top line of LCD
//display "Player 2: " and p2 score on bottom line of LCD

break;

47

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

/*
* %
* %
* x
* x
* %
* %
* %
* x
* x
* %

P N T

/

ca

{

}

se

case '0':

{

// alter flag so that rocker switches so not trigger
// points being entered increase/decrease

48

'U': // update - crib board does not send this command

break;

// Game is over. Stop collecting points.

game_over = 1;
break;

}
default:

{

// for some reason a packet made it through without

// a valid command

}
}
is packet =
}
RF CMD = 0;
check for packet

0;

0;

Sample C code for encoding Hum-xxx—-PRO commands

ALL CODE BELOW FALLS UNDER COPYRIGHT SHOWN HERE
Copyright 2015 Linx Technologies

159 Ort Lane

Merlin, OR, US 97532
www.linxtechnologies.com

License:

Permission is granted to use and modify this code,
any purpose, provided the copyright statement and license are included.

Function: HumProCommand

Description: This function encodes a command byte sequence.

If len = 1, a read command is generated.
If len > 1, a write command is generated.
rcmd[0] = register number

rcmd[1l..(n-1)] = bytes to write

number of encoded bytes, n+2 to 2*n+2
out: encoded command, length >= 2*n + 2
in: sequence of bytes to encode

number of bytes in rcmd, 1..32

unsigned char HumProCommand (unsigned char *ecmd,
const unsigned

{

unsigned char dx
unsigned char sx
unsigned char v;

while (n--)

char *rcmd, unsigned char n)

2; // destination index
0; // source index
// value to be encoded

without royalty,

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

v = rcmd[sx++];
if (v >= 0x£0)
{
ecmd[dx++] = Oxfe;
v &= 0x7/f;
}
ecmnd [dx++] = v,
}
ecmd[0]
ecmd[1]
return dx;

Oxff;
dx - 2;

/* Function: HumProRead

* Description: This function encodes a read command to the specified
* register address.

* number of encoded bytes, 3 to 4

* out: encoded read command, length >= 4

* register number to read, 0..0xff

*

/

unsigned char HumProRead (unsigned char *cmd, unsigned char req)
{

unsigned char ra; // read register byte

ra = reg * 0x80;

return HumProCommand (cmd, &ra, 1);

/* Function: HumProWrite

* Description: This function encodes a command to write a single byte to
* a specified register address.

* number of encoded bytes, 4 to 6

* out: encoded read command, length >= 6

* register number to write, 0..0xff

* value byte, 0..0xff

*

/

unsigned char HumProWrite (unsigned char *cmd, unsigned char regq,
unsigned char wval)

{

unsigned char cs[2];

cs[0] = reg;

cs[1l] = val;

return HumProCommand (cmd, cs, 2);

49

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 50

pushbuttons.c

/***

* Cribbage for People with Reduced Vision
* Controller

* Push Buttons

* Andrew Ashton

* April, 2020

*

**/

#include "includes.h"

extern unsigned char pl score, p2 score; // player 1 & 2 scores
extern unsigned char new points; // new points being entered
extern unsigned char game over; // flag

extern unsigned char volatile check buttons;

/*
* This function is used to check the status of the pushbuttons.
* -> +1, -1, +5, -5 rocker switches alter the point being entered so long as
* values are within the range of 0 to MAX POINTS and the game is not over
* Depending on the state of the game:
* -> Yes button either: - sends command to start a new game
* - sends command to update score of this player
* - clears scores from the LCD and displays
previous
* LCD message.
* -> No button either: - clears the points being entered from the LCD
and
clears the new points variable
- sends command to NOT start a new game
- clears scores from the LCD and displays
previous
* LCD message.
* => Scores button: - sends command to get both scores from crib
board

*

* REPLACE THIS CODE WITH STATE MACHINE!
*

*/
void pushbuttons (void)
{
if (debounce upl())
{
if (new points < MAX POINTS && ! game over)
{
new points++;
// display new points on LCD
}
}
else if (debounce downl())
{

if (new _points > 0 && ! game over)
{

new points--;

// display new points on LCD

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 51

}

}
else if (debounce up5())
{
if (new points <= (MAX POINTS - 5) && ! game over)
{
new_points += 5;
// display new points on LCD
}
}
else if (debounce down5())
{
if (new_points >= 5 && ! game over)
{
new points -= 5;
// display new points on LCD
}
}
else if (debounce yes())
{
// - if normal gameplay: send points, refresh LCD top line of
// LCD so that no points are shown
// - if asked "new game?" send command to start new game and
// show "Enter Points: " on top line of LCD, set state to
// normal gameplay
// - 1f scores are displayed on screen, reset scores display
// timer and go back to previous LCD display
}
else if (debounce no())
{
// - if normal gameplay: clear points being entered on LCD and
// reset new points variable
// - if asked "new game?" send command to not start new game
// and show "Enter points: " on top line of LCD, set state to
// normal gameplay
// - 1if scores are displayed on screen, reset scores display
// timer and go back to previous LCD display
}
else if (debounce scores())
{
// - if normal gameplay or scores are being displayed on LCD or
// game is over: send command to get scores from crib board
// - maybe do the same even if asked "new game?"

}
check buttons = 07

// Service routine called by a timer interrupt
unsigned char debounce yes(void)

{

}

static uintl6 t State = 0; // Current debounce status
State=(State<<l) | 'raw key pressed(YES BUTTON) | 0xec000;
if(State==0xf000)return 1;

return 0;

// Service routine called by a timer interrupt
unsigned char debounce no(void)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

static uintl6_t State = 0; // Current debounce status
State=(State<<l) | !'raw_key pressed(NO BUTTON) | 0xe000;
if (State==0x7000)return 1;

return 0;

}

// Service routine called by a timer interrupt
unsigned char debounce scores(void)

{
static uintl6_t State = 0; // Current debounce status
State=(State<<l) | 'raw_key pressed(SCORES BUTTON) | 0xe000;
if (State==0x7000)return 1;
return 0O;

}

// Service routine called by a timer interrupt
unsigned char debounce up5(void)

{
static uintl6_t State = 0; // Current debounce status
State=(State<<l) | 'raw_key pressed(UP _FIVE) | 0xec000;
if (State==0xf000)return 1;
return 0O;

}

// Service routine called by a timer interrupt
unsigned char debounce downb (void)

{
static uintlé t State = 0; // Current debounce status
State=(State<<l) | 'raw_key pressed(DOWN FIVE) | 0xe000;
if (State==0xf000)return 1;
return 0;

}

// Service routine called by a timer interrupt
unsigned char debounce upl(void)

{
static uintl6_t State = 0; // Current debounce status
State=(State<<l) | !'raw_key pressed(UP _ONE) | 0xec000;
if (State==0xf000)return 1;
return 0;

}

// Service routine called by a timer interrupt
unsigned char debounce downl (void)

{
static uintl6_t State = 0; // Current debounce status
State=(State<<l) | !'raw_key pressed(DOWN ONE) | 0xe000;
if(State==0x7t000)return 1;
return 0;

}

// part of button debounce routine
unsigned char raw_ key pressed(unsigned char switch status)
{

return ! switch status;

}

52

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

led.c

/***

* Cribbage for People with Reduced Vision
* Controller

* Serial Peripheral Interface

* Andrew Ashton

* April, 2020

*

***/

#include "includes.h"

/*
* This function initializes the MSSP1l peripheral as follows:

* SPI master mode 0,0 with a clock of 4MHz (Fosc/4), input data sampled at
* the middle of data output time, and enabled.

*/
void spi init(void)
{
SSP1STAT = 0x40; //01000000
SSP1CON1 = 0x20; //00100000
}
/*

* This function initializes the MCP23S17 SPI bus expanders.
* Ports A and B are set up as outputs and all pins are cleared.
*/

void portexpinit (void)

{

unsigned char i, hardware addr;

// clear all outputs on port expanders and set port direction

CsS = 0y

SSP1BUF = LCD CMD BYTE; // slave address with R/W bit low (write)

ssp_tx done() ;

SSP1BUF = GPIOA; // write to PORTA

ssp_tx done() ;

SSP1BUF = 0x00; // all low PORTA on initialization
// (note: device is in sequential mode on reset).

ssp_tx done(); // Means the address pointer is auto incremented
// 1.e. it points to PORTB automatically

SSP1BUF = 0x00; // all low PORTB on init

ssp_tx done() ;

Cs = 1;

__delay ms (1) ;

// set port direction

Cs = 0;

// send write command to port expander

SSPIBUF = LCD CMD BYTE;

ssp_tx done() ;

SSP1BUF = IODIRA; // write to direction registe
ssp_tx done() ; // (sequential write on)

SSP1BUF = 0x00; // port expander PORTA all outputs
ssp_tx done() ;

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 54

SSP1BUF = 0x00; // port expander PORTB all outputs
ssp_tx done() ;
CS = 1; // de-select port expander

}

/* This subroutine initializes the LCD.
* Note: The LCD is connected to a port expander (MCP23S17)
*/
void lcd init(void)
{
__delay ms(40);
send cmd 2 lcd(0x38); // function set (8-bit, 2 lines, 5x7 chars)
send cmd 2 1lcd(0x38); // function set again
send cmd 2 1lcd(0x0F); // display on, cursor on and blinking
send _cmd 2 1cd(0x01); // clear display
send cmd 2 lcd(0x06); // entry mode set

// This function waits for SPI transmission to complete
void ssp tx done(void)
{

while (!PIRlbits.SSPIF);

PIR1bits.SSPIF = 0O;

}

/* This function sends a data byte to the LCD.
* Input: char lcd data - the data byte to be sent to the LCD
*/
void send data 2 lcd(char lcd data)
{
CS = 0; // select port expander
SSP1BUF = LCD CMD BYTE; // send write command to port expander
ssp_tx done() ;
SSP1BUF = GPIOB; // write to PORTB
ssp_tx done() ;
SSPIBUF = lcd data;
ssp_tx done() ;
Cs = 1;
__delay ms (1) ;

Cs = 0;

SSP1BUF = LCD CMD BYTE; // send write command to port expander
ssp_tx done() ;

SSP1BUF = GPIOA; // write to PORTA

ssp_tx done() ;

SSP1BUF = 0xCO0; // set enable (RS)

ssp_tx done() ;

CsS = 1;

__delay ms(1);

Cs = 0;

SSP1BUF = LCD CMD BYTE; // send write command to port expander
ssp_tx done() ;

SSP1BUF = GPIOA; // write to PORTA

ssp_tx done() ;
SSP1BUF = 0x40; // clear enable

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

ssp_tx done();
cs = 17
__delay ms(2);

}

/* This function sends a command byte to the LCD.
* Input: char lcd cmd - the command byte to be sent to the LCD
*/
void send cmd 2 lcd(char lcd cmd)
{

Cs = 0;

SSP1BUF = LCD CMD BYTE; // send write command to port expander
ssp_tx _done();

SSP1BUF = GPIOB; // write to PORTB

ssp_tx done() ;
SSPIBUF = lcd cmd;
ssp_tx done() ;

cs = 1;

__delay ms(2);

Cs = 0;

SSP1BUF = LCD CMD BYTE; // send write command to port expander
ssp_tx done() ;

SSP1BUF = GPIOA; // write to PORTA

ssp_tx done() ;

SSP1BUF = 0x80; // set enable (RS)

ssp_tx done() ;

Cs = 1;

__delay ms(2);

CsS = 0;

SSP1BUF = LCD CMD BYTE; // send write command to port expander
ssp_tx done() ;

SSP1BUF = GPIOA; // write to PORTA

ssp_tx done() ;

SSP1BUF = 0x00; // clear enable

ssp_tx done() ;

Cs = 1;

__delay ms(2);

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 56

interrupts.c

/**

* Cribbage for People with Reduced Vision
* Interrupt Service Routines

* Controller

* Andrew Ashton

* April, 2020

*

***/

#include "includes.h"

extern unsigned char rx buffer[], cmd type;
extern unsigned char volatile is packet, check for packet;
extern unsigned char volatile cmd response, check buttons;

/
The following is the high priority interrupt service routine (ISR).
This routine is called when a byte has been received on the UART
If there is a character in the UART RX buffer:
- Character is read from the buffer and stored in global rx buffer
array at element number determined by global n.
If incoming UART data is a command response (/CRESP pin is low) the packet
will come in one of the following forms:
Responses to a read command (3 bytes if valid request, 1 byte otherwise):
- ACK (0x06), register address, value
- NACK (0x15) (if the register address is invalid)
Responses to a write command (1 byte):
- ACK (0x06)
- NACK (0x15) (if invalid or read-only register)
If incoming UART data is received RF data (/CRESP pin is high), the packet
will be 6-bytes long and come in the following form:
byte 1: data tag

b S S S . S S R e S . S S I I T S

byte 2: number of bytes in data field
byte 3: cribbage system command byte
byte 4: cribbage system sender ID byte
byte 5: 1lst cribbage system data byte
byte 6: last cribbage system data byte
/
void _ interrupt(high priority) high isr(void)
{
static unsigned char n = 0;
if (PIR3bits.RC2IF)
{

rx_buffer[n] = RCREG2;
if ('RF_CRESP) // command response

{
if ((rx buffer[n] == ACK && n == 0) || (n == 1))
{
if (cmd type == READ)
n++;
else
{
n=0;
cmd response = 1;
}

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 57

else if (rx buffer[n] == NACK && n == 0)
{
n=0;
cmd response = 1;
Nop(); // error - do something
}
else if (n == 2
{
cmd response = 1;
n=0;
}
else
n = 0;
}
else // Incoming RF packet
{
if (rx buffer[n] == DATA TAG && n == 0) // packet is data
{
n++;
}
else if (rx buffer[n] == PKTDATA LEN && n == 1) // Enough bytes?
{
n++;
}
else if (n > | && n < (I + PKTDATA LEN))
{
n++;
}
else if (n == (I + PKTDATA LEN))
{
is_packet = 1;
n=0;
}
else
n=0;
}
}
}
/*
* The following is the low priority interrupt service routine.
* This routine is called when TimerO overflows. This is being used to set a

* flag to check the status of the push buttons. Overflows every 2 ms.
* Also, every 50 ms, a flag is set to check the receive buffer.
*/

void _ interrupt(low priority) low isr(void)

{
static unsigned char i = 0;
if (INTCONbits.TMROIF)
{

TMROH = 0xEO;
TMROL = 0xC1;
INTCONbits.TMROIF = O;
check buttons = 1; // set flag to poll push buttons
if (i < 24)
i++;
else

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

check for packet = 1; // set flag to check receive buffer
i=20;

58

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 59

putch.c

/**

*

b S T .

Cribbage for People with Reduced Vision

Controller

putch function

This function is used by printf to transmit a character (the function
argument: data) to one of various possible output destinations. The
destination is determined by global enumerated data type variable stream.
Andrew Ashton

April, 2020

**/

#include "includes.h"

extern enum putch stream stream;

void putch(char data)

{

switch (stream)

{
case UART:
{
// Output to UART serial port
while (!'PIR3bits.TX2IF);
TXREG2 = data;
break;
}
case LCD:
{
// Output to LCD - location on LCD screen must already be set
send data 2 lcd(data);
break;
}
}

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 60

Appendix B — Controller Headers

All code below is based on the initial prototype with some untested alterations.

includes.h

/**

* Cribbage for People with Reduced Vision
Controller

File: includes.h

Author: Andrew Ashton

*
*
*
*
* April, 2020
**/
#pragma warning disable 1498

#include <xc.h>

#include <stdint.h>

#include <stdio.h>

#include "controllerconfig.h"

#include "prototypes.h"

#include "defines.h"

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

controllerconfig.h

/**

* Cribbage for People with Reduced Vision

Controller
Author:

April, 2020

Andrew Ashton

***/

// PIC18LF44K22 Configuration Bit Settings

// CONFIG1H
#pragma config

config
config

#pragma
#pragma
#pragma config

#pragma config

// CONFIG2L
#pragma config

#pragma config

#pragma config

// CONFIG2H
#pragma config

#pragma config

// CONFIG3H
#pragma config

#pragma config

#pragma config

#pragma config

#pragma config
RCO)
#pragma

#pragma

config
config

FOSC = INTIOG67
PLLCFG = OFF
PRICLKEN = OFF
FCMEN = OFF
IESO = OFF
PWRTEN = OFF
BOREN = SBORDIS
BORV = 190
WDTEN = OFF
WDTPS = 32768
CCP2MX = PORTC1
PBADEN = ON
CCP3MX = PORTB5
HFOFST = ON
T3CMX = PORTCO
P2BMX = PORTD2
MCLRE = INTMCLR

//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//

//
//
//

Oscillator Selection bits
(Internal oscillator block)
4¥X PLL Enable (Oscillator used directly)
Primary clock enable bit (Primary clock
can be disabled by software)
Fail-Safe Clock Monitor Enable bit
(Fail-Safe Clock Monitor disabled)
Internal/External Oscillator Switchover
bit

Power-up Timer Enable bit
timer disabled)

Brown-out Reset Enable bits (Brown-out
Reset enabled in hardware only
(SBOREN 1is disabled))

Brown Out Reset Voltage bits
to 1.90 V nominal)

(Power up

(VBOR set

Watchdog Timer Enable bits
timer is always disabled.
no effect.)

Watchdog Timer Postscale Select
bits (1:32768)

(Watch dog
SWDTEN has

CCP2 MUX bit (CCP2 input/output is
multiplexed with RC1)

PORTB A/D Enable bit (PORTB<5:0> pins
are configured as analog input
channels on Reset)

P3A/CCP3 Mux bit (P3A/CCP3 input/output
is multiplexed with RBY5)

HFINTOSC Fast Start-up (HFINTOSC output
and ready status are not delayed by
the oscillator stable status)

Timer3 Clock input mux bit (T3CKI is on

ECCP2 B output mux bit (P2B is on RD2)
MCLR Pin Enable bit (RE3 input pin
enabled; MCLR disabled)

61

(Oscillator Switchover mode disabled)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

// CONFIG4L

#pragma config STVREN

#pragma config LVP =

#pragma config XINST

// CONFIGS5L
#pragma config CPO =

#pragma config CP1l =
// CONFIGS5H

#pragma config CPB =
protected)

#pragma config CPD =
// CONFIG6L

#pragma config WRTO
#pragma config WRTI1

// CONFIGG6H
#pragma config WRTC

#pragma config WRTB

#pragma config WRTD

// CONFIGTL
#pragma config EBTRO

blocks)
#pragma config EBTRI1

// CONFIGTH
#pragma config EBTRB

= ON

ON

= OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

= OFF

= OFF

OFF

//
//
//
//

//
//

//
//

//
//
//
//

Stack Full/Underflow Reset Enable bit
(Stack full/underflow will cause Reset)

Single-Supply ICSP Enable bit
(Single-Supply ICSP enabled if MCLRE
is also 1)

Extended Instruction Set Enable bit
(Instruction set extension and Indexed
Addressing mode disabled (Legacy mode))

Code Protection Block 0 (Block O
(000800-001FFFh) not code-protected)

Code Protection Block 1 (Block 1
(002000-003FFFh) not code-protected)

Boot Block Code Protection bit (Boot
block (000000-0007FFh) not code-

Data EEPROM Code Protection bit (Data
EEPROM not code-protected)

Write Protection Block 0 (Block O
(000800-001FFFh) not write-protected)

Write Protection Block 1 (Block 1
(002000-003FFFh) not write-protected)

Configuration Register Write Protection
bit (Configuration registers
(300000-3000FFh) not write-protected)

Boot Block Write Protection bit
(Boot Block (000000-0007FFh) not
write-protected)

Data EEPROM Write Protection bit
(Data EEPROM not write-protected)

Table Read Protection Block 0
(Block 0 (000800-001FFFh) not protected
from table reads executed in other

Table Read Protection Block 1 (Block 1
(002000-003FFFh) not protected from
table reads executed in other blocks)

Boot Block Table Read Protection bit
(Boot Block (000000-0007FFh) not
protected from table reads executed
in other blocks)

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 63

defines.h

/***

* Cribbage for People with Reduced Vision

Controller

File: defines.h

April, 2020

*
*
* Author: Andrew Ashton
*
*
*

**/

#define XTAL FREQ 16000000 // for delay ms() and delay us())

#define testbit (var,

#define setbit (var,
#define clrbit (var,

// general defines

#define PLAYER NUM 1

bit) ((var) & (1 <<(bit)))
bit) ((var) |= (1 << (bit)))
bit) ((var) &= ~(1 << (bit)))

// This controller is player 1
// Change this to 2 if this is player 2's controller

#define MAX SCORE 121 // maximum score
#define MAX POINTS 29 // maximum number of points that can be scored at

once

// buttons and switches defines

#define YES BUTTON PORTCbits.RCO // On header J4
#define NO BUTTON PORTAbits.RAG6 // On header J5
#define SCORES BUTTON PORTAbits.RA7 // On header J6
#define UP_ONE PORTAbits.RA2 // +1 on rocker header J7
#define DOWN ONE PORTAbits.RA3 // -1 on rocker header J7
#define UP_FIVE PORTAbits.RAO // +5 on rocker header J8
#define DOWN FIVE PORTAbits.RAL // -5 on rocker header J8

// SPI and LCD defines

#define CS LATAbits.

#define GPIOA 0x12
#define GPIOB 0x13
#define IODIRA 0x00

LATA4 // chip select for LCD port expander
// address of PORTA of port expander
// address of PORTB of port expander
// address of IODIRA register of port expander

#define LCD _CMD BYTE 0x40 // Command byte for port expander/LCD

// RF module defines
#define TEN BIT TIMES 2 // 10 bit times is approx. 1 ms at 9600 bps baud rate

#define ACK 0x06
#define NACK 0x15
#define WRITE O
#define READ 1

// RF Module labels

// Command ACK response from RF module
// Command NACK response from RF module

#define DATA TAG 0x02 // Packet data tag value
#define PKTDATA LEN 4 // How many bytes of data in a packet

// RF Module register values

#define
#define
#define

SENDP 0x01
GETPH 0x02
GETPD 0x03

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

#define GETPHD 0x04
#define CLRRXP 0x05
#define CLROB 0x06
#define CLRIB 0x07

// RF Module register bits
#define EX BUFOVFL 0
#define EX RFOVFL 1
#define EX WRITEREGFAILED 2
#define EX NORFACK 3
#define EX BADCRC 4
#define EX BADHEADER 5
#define EX BADSEQID 6
#define EX BADFRAMETYPE 7
#define EX TXDONE 0
#define EX RXWAIT 1

// All RF Module pins on J3

#define RF BE PORTCbits.RC6 // Buffer empty, input, active high
#define RF_CRESP PORTDbits.RD3 // Command Response, input, active low

#define RF_EX PORTDbits.RD2 // Exception, input, active high
#define RF_POWER DOWN LATCbits.LATC2 // output, active low

#define RF _CMD LATCbits.LATC1 // Command, output, 0 for commands,

data

// All RF Module pins on J4

#define RF_CTS PORTDbits.RD5 // UART Clear to Send, input, active low

#define RF CMD DATA IN PORTDbits.RD6 // UART Data/Command TX
#define RF _CMD DATA OUT PORTDbits.RD7 // UART Data/Command RX
#define RF _RESET LATBbits.LATB5 // output, active low

// Serial number of RF module on Playing Board - used as destination address

// for all RF transmissions.
#define RF MODULEB DSN3 0x00
#define RF_MODULEB DSN2 0x01
#define RF_MODULEB DSN1 0x16
#define RF_MODULEB DSNO 0xD5

//RF Module register non volatile addresses

#define RF_UARTBAUD 0x03 // default 0x01 - 9600 baud
#define RF _DATATO 0x05 // Data Timeout - default 0x10
#define RF MAXTXRETRY 0x07 // default Ox1A

64

#define RF CMDHOLD 0x23 // Hold RF data when /CMD pin low - default 0x00

#define RF MYDSN3 0x34 // MSB - each byte is read only
#define RF_MYDSN2 0x35

#define RF_MYDSN1 0x36

#define RF MYDSNO 0x37 //LSB

#define RF PKTOPT 0x83 // MSB --> 0/0/0/0/RXP_CTS/RXPKT/TXnCMD/TXPKT

//RF Module register volatile addresses

#define RF IDLE 0x58 // default 0x00

#define RF WAKEACK 0x59 // default 0x01

#define RF_EEXFLAGO 0xCF // LSB of extended exception flags
#define RF_EEXFLAG1 O0xCE // MSB of exception flags

#define REF EEXMASKO 0xD2 // LSB of extended exception mask

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

#define

#define
#define
#define
#define

#define

RF_EEXMASKI

RF DESTDSN3
RF DESTDSN2
RF_DESTDSNI1
RF_DESTDSNO

RF_REG_CMD

0xD1 // MSB of exception flags

0x68 // MSB of destination DSN address
0x69
O0x6A
0x6B // LSB of destinatino DSN address

0xC7 // Write only - No default

enum putch stream {UART, LCD};

65

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

prototypes.h

/***

* Cribbage for People with Reduced Vision
* Controller

* File: prototypes.h

* Author: Andrew Ashton
*
*
*

April, 2020

**/

void portinit(void) ;
void uart init(void);
void timer0O init(void);

// Switch and button functions

void pushbuttons (void) ;

unsigned char debounce yes(void);

unsigned char debounce no(void);

unsigned char debounce scores(void) ;

unsigned char debounce up5(void) ;

unsigned char debounce down5(void) ;

unsigned char debounce upl(void);

unsigned char debounce downl (void) ;

unsigned char raw key pressed(unsigned char switch status);

void putch(char data);

// RF module functions
void rf init(void);
void rf receive(void);
void send rf command(unsigned char *cmd, unsigned char cmd len);
void send rf data(unsigned char data);
unsigned char HumProCommand (unsigned char *ecmd,
const unsigned char *rcmd, unsigned char n);
unsigned char HumProRead (unsigned char *cmd, unsigned char reg);
unsigned char HumProWrite (unsigned char *cmd, unsigned char regq,
unsigned char val);

// SPI and LCD functions

void spi init(void);

void portexpinit(void) ;

void lcd init(void);

void ssp_tx done(void) ;

void send data 2 lcd(char lcd data);
void send cmd 2 lcd(char lcd cmd);

66

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

All code below is based on the initial prototype with some untested alterations.

portinit.c

Appendix C — Controller Initialization

/**

#include

*

*

*

*

**/

Cribbage for People with Reduced Vision

Controller

Andrew Ashton

April, 202

0

"includes.h"

void portinit (void)

{

/*

* Oscillator initialization
* Using 16MHz RC oscillator.
(INTIO7 - internal oscillator block CLKOUT on OSC2/RA6)

* CONFIG
*/
OSCCON =

PORTA
RAO -
RALl -
RA2 -
RA3 -
RA4 -
RAS -
RAG6 -
RA7 -

b S R T S R S

*

*/

LATA = 0x47;

ANSELA =

1H

0x7C;
OSCCON2bits.PRISD = 0;
OSCCON2bits.SOSCGO = 0;

Initialization

+5
-5
+1
-1
CS
No

Rocker switch (
Rocker switch (
Rocker switch (
Rocker switch (
(SPI chip select),
Connection

J8)
J8)
J7)
J7)
)

4

4

4

4

input, active
input, active
input, active
input, active

low
low
low
low

Port Expander for LCD,

"No" button (J5), input, active low
"Scores" button (Jo6),

input active low

output,

// disable chip select 1 and turn off RGB LED
0x00;
TRISA = 0x00;

pin 22 - /RESET pin of RF Module,

digital,

RB6/PGC - In-Circuit Serial Programming Clock

/*
* PORTB Initialization

* RBO - No Connection

* RB1 - No Connection

* RB2 - No Connection

* RB3 - No Connection

* RB4 - No Connection

* RB5 - U4

*

* RB7/PGD - In-Circuit Serial Programming Data
*/

LATB = 0x20;

ANSELB =

/*

// set /RESET for now
0x00;
TRISB = 0x00;

output

Use primary clock determined by value in

active low

67

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

RC4/SDI1 - No Connection - this SPI bus is output only

RC5/SDO1 - SPI Data Out for all port expanders,

RC6/TX1 - U4 pin 31 - BE of RF Module, digital, input

digital,

* PORTC Initialization

* RCO - "Yes" button (J4), input, active low

* RC1 - U4 pin 13 - /CMD pin of RF Module, digital, output

* RC2 - U4 pin 12 - /POWER DOWN pin of RF Module, digital, output
* - This output must be pulled high (must not float)

* RC3/SCK1 - SPI clock for LCD port expander, digital, output

*

*

*

output

* RC7/RX1 - No Connection
*/
LATC = 0x07; // disable chip select 2, pull /CMD and /POWER DOWN high
ANSELC = 0x00;
TRISC = 0x40;
/*
* PORTD Initialization
* RDO/SCL2 - No Connection
* RD1/SDA2 - No Connection
* RD2 - U4 pin 8 - EX pin of RF Module, digital, input
* RD3 - U4 pin 7 - /CRESP pin of RF Module, digital, input
* RD4 - No Connection
* RD5 - U4 pin 28 - /CTS pin of RF Module, digital, input
* RD6/TX2 (UART) - U4 pin 27 - CMD DATA IN of RF Module, digital, input
* RD7/RX2 (UART) - U4 pin 26 - CMD DATA OUT of RF Module, digital, input
*/
LATD = 0x00;
ANSELD = 0x00;
TRISD = 0OxEC;
/*
* PORTE Initialization
* REO - No connection
* RE1 - No connection
* RE2 - No connection
* RE3 - VPP - programmer voltage input
*/
LATE = 0x00;
ANSELE = 0x00;
TRISE = 0x08;

68

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

timers.c

/**
* Cribbage for People with Reduced Vision

* Controller

* Timer Initialization

* Andrew Ashton

* April, 2020

*

***/

#include "includes.h"

/%
* This function initializes TIMERO as:
* - enabled
* - 16-bit mode
* - Using Fosc/4 (Fosc = 16MHz)
* - Not using pre-scaler
* - TIMERO triggers a low priority interrupt every 2ms
*/
void timer0 init(void)
{
TMROH = 0xEO;
TMROL = 0xCO;

TOCON = 0x08;
INTCON2bits.TMROIP = 0;
INTCONbits.TMROIF = 0O;
INTCONbits.TMROIE = 1;
TOCONbits.TMROON = 1;

69

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

uart.c

/***

* Cribbage for People with Reduced Vision
* Controller

* Andrew Ashton

* April, 2020

***/

#include "includes.h"

/%
* Initialization
* asynchronous UART

* 9K6, 8N1l, no flow control
*

*/

void uart init(void)

{
TXSTA2bits.TXEN = 1;
TXSTA2bits.SYNC2 = 0;
RCSTA2bits.SPEN = 1;
RCSTA2bits.CREN = 1;
SPBRGH2 = 0x00;

SPBRG2 = 0x19;
BAUDCON2bits.BRG1l6 = 0;
TXSTA2bits.BRGH = 0;

IPR3bits.RC2IP
PIE3bits.RC2IE

1;
1;

70

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Appendix D — Cribbage Board Code

All code below is based on the initial prototype with some untested alterations.

main.c

/***

* Cribbage for People with Reduced Vision
LED Cribbage Board
Main source code

April,

2020

*
*
* Author: Andrew Ashton
*
*

**/

#include

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

"includes.h"

char pl old score = 0, p2 old score = 0; // old player scores
char pl new score = 0, p2 new score = 0; // newly received scores
char game over = 0, port exp addr = 0;

char volatile is packet = 0, cmd response = 0;

char volatile check for packet = 0, fun times = 0;

char cmd type, update leds = 0;

char rx buffer[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

enum putch stream stream;

// These next variables are for testing purposes only
//unsigned char temp value = 0;
//unsigned char score LSB, score MSB;

void main(void)

{

unsigned int output bytes;
portinit () ;

uart

init () ;

spi_init ();
portexpinit () ;
timer0 _init();
RCONbits.IPEN = 1;
INTCONbits.GIEH = 1;

INTCONbits.GIEL

1;

__delay ms(2000); // delay to let RF module do its thing
rf init();

while

{

(1)

if (check for packet)

rf receive();

if (update leds)

display scores();

71

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 72

rfmodule.c

/**

* Cribbage for People with Reduced Vision

* LED Cribbage Board

* HUM 900 Pro RF Module from Linx Technologies
* Andrew Ashton

* April, 2020

*

***/

* RF Module Packet format:
* Header: Tag, header length (in bytes), frame type, hop id, sequence,
Destination DSN address, Source DSN, data length (in bytes)
Data: Tag, data length (in bytes), data bytes
*/

#include "includes.h"

extern unsigned char pl new score, p2 new_score;

extern unsigned char pl old score, p2 old score;

extern unsigned char volatile cmd response, is packet, check for packet;
extern unsigned char rx buffer[], cmd type, update leds, game over;
extern enum putch stream stream;

/*
* RF Module initialization
* Packet options:
* - Transmit - All bytes held until triggered by /CMD pin
* - Transmit when /CMD pin is lowered
* - Receive - Will be checked periodically.
* Receives one packet at a time on command.
* - CTS is used for flow control and /CRESP is used as a status
* pin.
*/

void rf init(void)

{

unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char results[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char cmd len = 0, reg addr;

unsigned char n = 0;

// The following was used for testing on initial prototype (only two
devices)

//write to reg values

// cmd type = WRITE;

// RF _CMD = 0;

// write DSN address of controller module into destination address regs

// cmd len = HumProWrite (cmd, RF _DESTDSN3, RF MODULEA DSN3);

// send rf command(cmd, cmd len);

// while(!cmd response);

// cmd _response = 0;

// cmd_len = HumProWrite (cmd, RF DESTDSN2, RF MODULEA DSN2) ;

// send rf command(cmd, cmd len);

// while(!cmd response);

// cmd response = 0;

// cmd_len = HumProWrite (cmd, RF DESTDSN1, RF MODULEA DSN1) ;

// send rf command(cmd, cmd len);

// while (!cmd response);

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

//
//
//
//
//

/*

*

73

cmd response = 0;

cmd len = HumProWrite (cmd, RF _DESTDSNO, RF MODULEA DSNO) ;
send rf command(cmd, cmd len);

while (!cmd response) ;

cmd response = 0;

Clear the input buffer - maybe temporary?

/

cmd response = 0;

cmd_len = HumProWrite(cmd, RF_REG CMD, CLRIB);
send rf command(cmd, cmd len);

while(!cmd response);

cmd response = 0;

/***/

/*

*

X% o ok

This one is to the non-volatile memory... Should only be needed
one time, to set up the packet handling options.

cmd len = HumProWrite (cmd, RF_PKTOPT, 0x07);
send rf command(cmd, cmd len);

while (!cmd response);

cmd response = 0;

/

/***/

RF

//

/*
*
*
*
*

delay ms(TEN BIT TIMES); // delay before setting /CMD line
RF CMD = 1; // No need to raise the /CMD unless transmitting bytes over

This next commented out section is for testing purposes only
It will be used for reading the value of registers on the RF module
to be sure the correct registers have the correct values

/

cmd type = READ;

reg addr = 0x1D;

while (reg addr <= 0x20)

{

cmd len = HumProRead(cmd, reg addr);
send rf command(cmd, cmd len);
while (!cmd response);
Nop () ;
if (rx _buffer[0] == ACK)
{
results[n] = rx buffer[2];
n++;

reg addr++;
}

else

{

// result of command was nack!

}

cmd response = 0;

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 74

/*

* This function sends an encoded command to the RF module to read the wvalue
of
a register or write a value to a register. The encoded command will be 3-

4
* bytes long for a read command or 4-6 bytes long for a write command.
* Responses will be via UART.
* input: cmd - char array - the command bytes
* cmd len - char - the number of bytes in the command
*

/
void send rf command(unsigned char *cmd, unsigned char cmd len)
{
int n;
for (n = 0; n < cmd _len; n++)
{
TXREG2 = cmd[n]; // send data
while('PIR3bits.TX2IF); // check UART buffer

}

unsigned char read rf register(unsigned char reg addr)
{
unsigned char cmd[6]1={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char result;
unsigned char cmd len = 0;
cmd response = 0;
RF CMD = 0;
cmd type = READ;
cmd len = HumProRead(cmd, reg addr);
send rf command(unsigned char *cmd, unsigned char cmd len);
while ('cmd response);
if (rx buffer[0] == ACK)
result = rx buffer[?];
else
{
// UART error - do something
}
cmd response = 0;
return result;

}

void write rf register(unsigned char reg addr, unsigned char reg value)
{

unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char cmd len = 0;

rx buffer[0] = 0x00; // using this instead of /CRESP because /CRESP goes

// high too early

cmd response = 0;

RF _CMD = 0;

cmd _type = WRITE;

cmd len = HumProWrite(cmd, reg addr, reg value);

send rf command(cmd, cmd len);

if (rx buffer[0] '= ACK)

{

// UART error, do something
}

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 75

* RF Transmit routine
* This function sends data to the playing board.
* Input: Data to be sent
*/
void transmit (unsigned char data)
{
unsigned char result;
RF CMD = 1;
stream = UART;
printf (data) ;
__delay ms(1);
RF CMD = 0;
while(!'RF BE); // transmit buffer empty?
if (RF_EX) // exception triggered?
{
result = read rf register (RF_EEXFLAGO) ;
if (testbit(result, EX NORFACK)) // max number of retries reached
no_comm() ;

/*

* RF Receive routine

* This function sets up the RF module to send a received packet from the

* receive buffer out on the UART. The function is run periodically. The

* sequence of events is as follows:

* - Check if the rx packet flag of the EEXFLAGO register in the module is
set

* - If it is not set, return to the calling function

* - If it is set, write a get packet data command to the CMD register of
the

* module and collect the magical ACK response.

* - Wait for the /CRESP pin go high

* - Raise the /CMD pin

* - Wait for the /CRESP pin to lower. When this happens, it means the

* complete packet has been sent on the UART. UART reception is handled

* in the ISR.

* - Double check we got all the data we were looking for.

* - If all is well, lower /CMD to complete the RX transfer cycle.

*/

void rf receive(void)
{
unsigned char cmd[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char results[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char EEXFLAGl, cmd len = 0;
//read EEXFLAGl register to see if there is a packet in the receive
buffer
RF _CMD = 0;
cmd response = 0;
cmd type = READ;
cmd_len = HumProRead(cmd, RF EEXFLAGL) ;
send rf command(cmd, cmd len);
while ('cmd response);
if (rx buffer[0] !'= ACK)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

// result of read command was nack! Error!
// do something and... exit?
}
EEXFLAGl = rx buffer[2];
rx_buffer[l] = 0x00;
Nop () ;
if (TESTBIT(EEXFLAGL, EX RXWAIT) == 0) // no packet waiting
return;
// if we made it this far, there is a packet waiting
INTCONbits.GIEL = 0;
cmd response = 0;
cmd _type = WRITE;
cmd len = HumProWrite(cmd, RF REG CMD, GETPD);
send rf command(cmd, cmd len);
// while (!cmd response); // freezes here because /CRESP already went
high
if (rx buffer[0] '= ACK)
{
// result of write command was nack!
// do something and... maybe... try again?
}
while ('RF _CRESP); // wait for signal that module is ready
RF CMD = 1; // trigger UART transfer cycle (dealt with in ISR)
while (RF _CRESP); // wait for signal that module is finished
if (!'is_packet)
{
// UART data does not match packet definition
// do something and... exit... I guess
}
else // successfully received UART data
{
switch (rx buffer[2])
{
case 'R': // controller is ready
{
// set status flag for that controller
// send ready command to that controller
break;

// case 'E': // error command not currently used by controllers
// {
// break;
// }
case 'N': // Response from controller to "new game?"
{
// 1If yes, reset scores, reset LEDs, send scores to each
// controller, set flag for regular gameplay
break;
}
case 'S': // request from controller for both scores
{
// send scores command to that controller
break;
}

case 'U': // Controller has sent updated score

{

76

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 77

/*
* x
* x
* %
* %
* %
* x
* x
* %
* %
* %

P T S T S S S S

// update that player's score
update leds = 1;
break;

case 'Q': // Controller does not send this command
{
break;
}
default:
{
// for some reason a packet made it through without
// a valid command
}
}
is_packet = 0;
}
RF CMD = 0;
check for packet = 07
INTCONbits.GIEL = 1;

Sample C code for encoding Hum-xxx-PRO commands

ALL CODE BELOW FALLS UNDER COPYRIGHT SHOWN HERE
Copyright 2015 Linx Technologies

159 Ort Lane

Merlin, OR, US 97532

www.linxtechnologies.com

License:
Permission is granted to use and modify this code, without royalty, for
any purpose, provided the copyright statement and license are included.

Function: HumProCommand
Description: This function encodes a command byte sequence.

If len = 1, a read command is generated.
If len > 1, a write command is generated.
rcmd[0] = register number

rcmd[1l..(n-1)] = bytes to write

number of encoded bytes, n+2 to 2*n+2
out: encoded command, length >= 2*n + 2
in: sequence of bytes to encode

number of bytes in rcmd, 1..32

unsigned char HumProCommand (unsigned char *ecmd,

{

const unsigned char *rcmd, unsigned char n)

unsigned char dx = 2; // destination index
unsigned char sx = 0; // source index
unsigned char v; // value to be encoded

while (n--)

{
v = rcmd[sx++];
if (v >= 0xf£0)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

ecmd[dx++] = Oxfe;
v &= 0x7/f;
}
ecmd[dx++] = v,
}
ecmd[0]
ecmd[1]
return dx;

Oxff;
dx - 2;

/* Function: HumProRead

* Description: This function encodes a read command to the specified
* register address.

* number of encoded bytes, 3 to 4

* out: encoded read command, length >= 4

* register number to read, 0..0xff

*

/

unsigned char HumProRead (unsigned char *cmd, unsigned char reg)
{

unsigned char ra; // read register byte

ra = reg * 0x80;

return HumProCommand (cmd, &ra, 1);

/* Function: HumProWrite

* Description: This function encodes a command to write a single byte to
* a specified register address.

* number of encoded bytes, 4 to 6

* out: encoded read command, length >= 6

* register number to write, 0..0xff

* value byte, 0..0xff

*

/

unsigned char HumProWrite (unsigned char *cmd, unsigned char reg,
unsigned char wval)

{

unsigned char cs[2];

cs[0] = reg;

cs[l] = val;

return HumProCommand(cmd, cs, 2);

78

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

leds.c

/**

* Cribbage for People with Reduced Vision
* LED Cribbage Board

* LED Score marker routines

* Andrew Ashton

* April, 2020

*

***/

#include "includes.h"

extern unsigned char volatile fun times; // temp flag for fun times
extern unsigned char pl old score, p2 old score, pl new score, p2 new score;
extern unsigned char update leds, port exp addr;

/* This function checks if the LEDs need to be updated and if so:
* - Player 1 LEDs are dealt with first.

* - The LED that is currently turned on (old score) is turned off.
* - The port expander that the LED associated with the new score is
determined
* - The output associated with the LED associated with the new score is
* calculated.
* - The output is written to the selected port expander
* - The same sequence is done with Player 2 LEDs.
*/
void display scores(void)
{

unsigned int output bytes;

unsigned char score LSB, score MSB, i, done loop;

if (pl_new_score != pl old score) // update player 1 LEDS

{
/* Clear current LED by clearing port expander output
* This is necessary for when the new score is on a different
* port expander.

*/
port exp addr = get port exp addr(pl old score);
Csl = 0;
write to leds(port exp addr, 0x00, 0x00);
Csl = 1;

/* Update port expander address */

port exp addr = get port exp addr(pl new score);

/* First translate the numerical score to port expander output
* bytes. Port A byte is LSB, Port B byte is MSB
*/

output bytes = translate score(pl new score);

/*
* Separate the translated output bytes so we can write to the
* port expander ports.

*/
CS1 = 0; // player 1 port expander chip select
score LSB = (unsigned char) (output bytes & OxO00FF);
score MSB = (unsigned char) (output bytes >> 8);
write to leds(port exp addr, score LSB, score MSB);
Csl = 1;

}
if (p2 new score != p2 old score) // update player 2 LEDs

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 80

{
// Update player 2 LEDs as above
port exp addr = get port exp addr(p2 old score);

Cs2 = 0;
write to leds(port exp addr, 0x00, 0x00);
Cs2 = 1;

/* Update port expander address */
port exp addr = get port exp addr(p2 new score);
output bytes = translate score(p2 new score);
CS2 = 0; //Player 2 port expander/LEDs
score LSB = (unsigned char) (output bytes & O0xO00FF);
score MSB = (unsigned char) (output bytes >> 8);
/* All Player 2 port expanders are installed upside down (with
* respect to Player 1 port expanders). LEDs are connected in
* "reverse" order so have to reverse order of bits.
*/
if (output bytes <= 128 && output bytes > 0)
score LSB = reverse set bit (score LSB);
else if (output bytes > 128)
score MSB = reverse set bit (score MSB);
// Send MSB to Port A and LSB to port B because its "reverse"
write to leds(port exp addr, score MSB, score LSB);
Cs2 = 1;
}
update leds = 0;

/%

* This function converts a numerical score to an integer value that
* represents the bit in the correct port expander's output bytes

* i.e. if score is 25 and correct port expander has already been

* calculated to have hardware address 1, then:

* 25 - (1le * 1) = 9.

* So score 25 is represented by the 9th bit of port expander 1's

* output bytes. Set that bit to turn on the LED.

*

/

unsigned int translate score(char score)

{

unsigned char bit num;

unsigned int output = 0;

if (score == 0)
return 0;

else

{
bit num = score - (16 * port exp addr);
SETBIT (output, (bit num - 1));
return output;

This function takes an unsigned character which has a single set bit in it
and puts that set bit in the reverse bitwise order.
eg. char value = 01000000
reversed char value 00000010
Input: unsigned char - char value - the value to reverse.
Output: the reversed value;

ok ok ok ok ko

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

*/
unsigned char reverse set bit (unsigned char char value)
{
unsigned char done loop = 0, 1 = 0;
do

{
if (TESTBIT (char value, 1))
{
SETBIT (char value, (7 - 1));
CLRBIT (char value, 1i);
done loop = 1;
}
else
i++;
}while (!done loop);
return char value;

}
/*

* Needs updating (see commented out section at start of function

* This is a temporary sequence which increases or decreases the player
scores

* every time TimerO overflows. This is for testing purposes.

*/

//void fun display(void)

/71

/*
* This next commented out section was to test the use of one
* chip select with two sequentially addressed port expanders
* to control two sequentially positioned LED arrays.

*/
// for (pl new score = 0; pl new score < 11; pl new score++)
// {
// update leds = 1;
// display scores();
// pl old score = pl new score;
// __delay ms(50);
// Nop () ;
// }
// Nop () ;
// for (pl new score = 17; pl new score < 27; pl new score++)
// {
// update leds = 1;
// display scores ()
// pl old score = pl new score;
// __delay ms (50);
// Nop () ;
// }
/*****************/
// unsigned int output bytes;
// unsigned char pl is up = 1; // Flags. True = score is moving upward
// unsigned char p2 is up = 0; // False = score is moving
downward
// unsigned char score LSB, score MSB;

// pl score = 1;

81

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

// p2 score = 10;

// while (1)

// {

// if (fun_times)

// {

// if (pl _is_up)

// {

// if (pl score < 10)
// pl score++;
// else

// {

// pl is up = 0;
// pl score--;

// }

// else

// {

// if (pl score > 1)
// pl score--;
// else

// {

// pl is up = 1;
// pl score++;

// }

// } // 1f (pl_4is_up)

// if (p2 is up)

// {

// if (p2_score < 10)
// P2 _score++;

// else

// {

// p2 is up = 0;
// p2 _score--;

// }

// else

// {

// if (p2_score > 1)
// p2_score--;
// else

// {

// p2 is up = 1;
// p2_score++;
// }

// } // if (p2_is up))

// fun times = 0;

// // change Player 1 LEDs

// /*

// * first translate the numerical score to port expander output
// * bytes. Port A byte is LSB, Port B byte is MSB

// */

// output bytes = translate score(pl score);

// CS0 = 0; // Player 1 score

// /*

// * Separate the translated output bytes so we can write to the

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 83

// * port expander ports.

// */

// score LSB = (unsigned char) (output bytes & O0xO0O0FF);
// score MSB = (unsigned char) (output bytes >> 8);

// write to leds(score LSB, score MSB);

// CsS0 = 1;

//

// // change Player 2 LEDs as above

// output bytes = translate score((p2 score));

// Csl = 0; // Player 1

// score LSB = (unsigned char) (output bytes & O0xO0O0FF);
// score MSB = (unsigned char) (output bytes>>8);

// write to leds(score LSB, score MSB);

// Csl = 1;

// } //if (fun_times)

// }

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

spi.c

84

/***

* Cribbage for People with Reduced Vision

* LED Cribbage Board
* Serial Peripheral Interface
* Andrew Ashton
* April, 2020

*

***/

#include "includes.h"

/%
* This function initializes the MSSP1
* SPI master mode 0,0 with a clock of
* the middle of data output time, and
*/

void spi init(void)

{

SSP1STAT =
SSP1CON1 =
Csl = 1;
CsS2 = 1;

0x40; //01000000
0x20; //00100000
//de-select Player
//de-select Player

1 port
2 port

N =

Xk o b X ok X of

order to select the player's row.
The 2 ports of each port expander
pins are cleared.

/

void portexpinit (void)

{

unsigned char i, hardware addr;

// enable hardware addressing on all port expanders,

// at a time.

for (1 = 0; 1 < 2; i++)
{
if (1 == 0)
Csl = 0;
else
Cs2 = 0;

This function initializes the MCP23S17 SPI bus
All port expanders are initialized in the same way,
process is done for each hardware address from 0 to 7,

(A and B)

peripheral as follows:
4MHz (Fosc/4), input data sampled at
enabled.

expanders
expanders

expanders.
so the initialization
for each /CS pin in

are set up as outputs and all

one chip select

// select Player 1 port expanders

// select Player 2 port expanders

// Enable hardware addressing on all port expanders on this /CS

// send write command - LSB is
SSP1BUF = 0x40;
ssp_tx done();
SSP1BUF = IOCON;
ssp_tx done();
SSP1BUF = 0x08;
ssp_tx done();
if (i == 0)

Csl = 1;
else

Cs2 = 1;

R/W, write is active low

// write to IOCON register

// enable hardware addressing.

// de-select Player 1 port expanders

// de-select Player 2 port expanders

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

}

/*
* This function takes a score and determines the port expander hardware
* address associated with that score.

* Returns unsigned char value - The port expander address

__delay ms(1);

}

// clear all outputs on port expanders and set port direction

for (1
{

for

{

0; 1 < 2; i++)

(hardware addr = 0; hardware addr < 8; hardware addr++)

// clear PORTA and PORTB on hardware address 0;

if (i == 0)
Csl = 0;
else
Cs2 = 0;

// Send write command to current port expander (LSB is /W)

SSPIBUF = 0x40 | (hardware addr << 1);

ssp_tx done();

SSP1BUF = GPIOA; // write to PORTA

ssp_tx done();

SSP1BUF = 0x00; // all low PORTA on initialization

// (note:
// Means the address pointer is auto incremented
// i.e. it points to PORTB automatically

ssp_tx done();

SSP1BUF = 0x00; // all low PORTB on init
ssp_tx done();
if (i == 0)
CsSl = 1;
else

Cs2 =

1;
__delay ms(1);

// set port direction

if (1 == 0)
CsSl = 0;
else
Cs2 = 0;

// send write command to current port expander
SSP1BUF = 0x40 | (hardware addr << 1);
ssp_tx done();

SSP1BUF = IODIRA; // write to direction registe
ssp_tx done () ; // (sequential write on)
SSP1BUF = 0x00; // bus expander PORTA all outputs
ssp_tx done();
SSP1BUF = 0x00; // bus expander PORTB all outputs
ssp_tx done();
if (i == 0)

CS1 = 1; // de-select U2 port expander
else

cs2 = 1; // de-select U3 port expander

85

device is in sequential mode on reset).

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

*/

86

unsigned char get port exp addr (unsigned char score)

{
float temp float;
unsigned char addr_ output 0;
temp float (float)score / 16.0;

/* Have to account for the offset.

* eg. score of 16 is on hardware address 0, not 1

* and the next score (17) would result in temp float being 0.625
* above the correct hardware address. So do the division above
* and then subtract the 0.625 offset.
*/

temp float -= 0.0625;

addr output = (int)temp float;
return addr_ output;

}
/*

* This function writes two characters
expander's
chip select must be activated prior
de-activated afterwards. There are
each chip select and are externally
Inputs: addr - the 3 bit hardware
gpa_byte - the byte to be
gpb_byte - the byte to be

b S S R S S

/
void write to leds(unsigned char addr,
unsigned char gpb byte)

{

if (addr == 0)
SSP1BUF = 0x40;
else
SSP1BUF = (0x40 | (addr << 1))
ssp_tx done();
SSP1BUF = GPIOA; // Port A

ssp_tx done();
SSPIBUF = gpa byte;
ssp_tx done();
SSP1BUF gpb_byte;
ssp_tx done();

// write data

// write data

}

to a port expander. The port

to calling this function and must be
multiple port expanders connected to
addressed with a 3 bit wvalue.

address of the port expander

written to Port A of the port expander
written to Port B of the port expander

unsigned char gpa byte,

// account for hardware addressing

’

to Port A

to Port B (seq. writes)

// This function waits for SPI transmission to complete

void ssp_tx done (void)

{
while (!PIRlbits.SSPIF);
PIRlbits.SSPIF = O;

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 87

interrupts.c

/**

* Cribbage for People with Reduced Vision
* LED Cribbage Board

* Interrupt Service Routines

* Andrew Ashton

* April, 2020

*

***/

#include "includes.h"

extern unsigned char volatile is packet, cmd response, check for packet;
extern unsigned char rx buffer[], cmd type;

extern char pl score, p2 score;

extern unsigned char fun times;

/*
* The following is the high priority interrupt service routine (ISR).
* This routine is called when a byte has been received on the UART

peripheral.
* If there is a character in the UART RX buffer:
* - The character is read from the buffer and stored in global

rx buffer
array at element number determined by global rx buffer num.
If incoming UART data is a command response (/CRESP pin is low) the packet
will come in one of the following forms:
Responses to a read command (3 bytes if valid request, 1 byte otherwise):
- ACK (0x06), register address, value
- NACK (0x15) (if the register address is invalid)
Responses to a write command (1 byte):
- ACK (0x06)
- NACK (0x15) (if invalid or read-only register)
If incoming UART data is received RF data (/CRESP pin is high), the packet
will be 6-bytes long and come in the following form:
byte 1: data tag

T T T T T T T S S S S S

byte 2: number of bytes in data field
byte 3: cribbage system command byte
byte 4: cribbage system sender ID byte
byte 5: 1lst cribbage system data byte
byte 6: last cribbage system data byte
/

void interrupt (high priority) high isr(void)
{
static unsigned char n = 0;
if (PIR3bits.RC2IF)
{
rx buffer[n] = RCREG2Z;
if (!RF_CRESP) // command response
{

if ((rx buffer[n] == ACK && n == 0) || (n == 1))
{
if (cmd type == READ)
n++;
else

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 88

cmd response = 1;

}
}
else if (rx buffer[n] == NACK && n == 0)
{

n=0;

cmd response = 1;

Nop(); // error - do something
}
else 1f (n == 2)

{

cmd response = 1;
n = 0;

}

else
n = 0;

}
else // Incoming RF data

{

if (rx buffer[n] == DATA TAG && n == 0) // packet is data
{
n++;
}
else if (rx buffer[n] == PKTDATA LEN && n == 1) // Enough bytes?
{
n++;

}
else if (n > 1 && n < (1 + PKTDATA LEN))
{
n++;
}
else if (n == (1 + PKTDATA LEN))
{
is packet = 1;
n = 0;

/%
* The following is the low priority interrupt service routine.
* This routine is called every time Timer0O overflows (50 ms)
* Sets a flag to check for a received packet.
* %
* Also used for a special routine called fun times, which turns the LEDs
* on, one at a time, sequentially. Not being used at this time.
*
*/
void interrupt(low priority) low isr(void)

{
if (INTCONbits.TMROIF)
{
TMROH = 0x3C;
TMROL = 0xB5;

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

INTCONbits.TMROIF = 0;
check for packet = 1;
//fun times = 1;

// set flag

89

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 90

putch.c

/**

*

Cribbage for People with Reduced Vision

* LED Cribbage Board

* putch function

* This function is used by printf to transmit a character (the function

* argument: data) to one of various possible output destinations. The

* destination is determined by a global enumerated data type variable
stream.

*

*

Andrew Ashton
April, 2020

**/

#include "includes.h"

extern enum putch stream stream;

void putch(char data)

{

switch (stream)

{
case UART:
{
// Output to UART serial port
send rf data(data);
break;
}
}

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 91

Appendix E — Cribbage Board Headers

All code below is based on the initial prototype with some untested alterations.

includes.h

/**

* Cribbage for People with Reduced Vision
LED Cribbage Board

File: includes.h

Author: Andrew Ashton

*
*
*
*
* April, 2020
**/
#pragma warning disable 1498

#include <xc.h>

#finclude "playingboardconfig.h"

#include "prototypes.h"

#include "defines.h"

#include <stdio.h>

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 92

playingboardconfig.h
/***

* Cribbage for People with Reduced Vision
LED Cribbage Board
Author: Andrew Ashton

April, 2020

***/

// PIC18LF44K22 Configuration Bit Settings
// 'C' source line config statements

// CONFIG1H
#pragma config FOSC = INTIO67 // Oscillator Selection bits (Internal
// oscillator block)
#pragma config PLLCFG = OFF // 4X PLL Enable (Oscillator used directly)
#pragma config PRICLKEN = OFF // Primary clock enable bit (Primary clock
// can be disabled by software)

#fpragma config FCMEN = OFF // Fail-Safe Clock Monitor Enable bit
// (Fail-Safe Clock Monitor disabled)
#pragma config IESO = OFF // Internal/External Oscillator Switchover

// bit (Oscillator Switchover mode disabled)

// CONFIG2L

#pragma config PWRTEN = OFF // Power-up Timer Enable bit (Power up
// timer disabled)

#fpragma config BOREN = SBORDIS // Brown-out Reset Enable bits (Brown-out
// Reset enabled in hardware only (SBOREN
// is disabled))

#pragma config BORV = 190 // Brown Out Reset Voltage bits (VBOR set
// to 1.90 V nominal)

// CONFIG2H

#pragma config WDTEN = OFF // Watchdog Timer Enable bits (Watch dog
// timer is always disabled. SWDTEN has no
// effect.)

#pragma config WDTPS 32768 // Watchdog Timer Postscale Select (1:32768)

// CONFIG3H
#pragma config CCP2MX

PORTC1 // CCP2 MUX bit (CCP2 input/output is
// multiplexed with RC1)

#pragma config PBADEN = ON // PORTB A/D Enable bit (PORTB<5:0> pins are

// configured as analog i/p channels on

Reset)

#pragma config CCP3MX = PORTB5 // P3A/CCP3 Mux bit (P3A/CCP3 input/output is
// multiplexed with RB5)

ON // HFINTOSC Fast Start-up (HFINTOSC output
// and ready status are not delayed by the
// oscillator stable status)

PORTCO // Timer3 Clock input mux bit (T3CKI is on

#pragma config HFOFST

#pragma config T3CMX
RCO)
#pragma config P2BMX PORTD2 // ECCP2 B output mux bit (P2B is on RD2)
#pragma config MCLRE = INTMCLR // MCLR Pin Enable bit (RE3 input pin

// enabled; MCLR disabled)

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

// CONFIG4L

#pragma config STVREN

#pragma config LVP =

#pragma config XINST

// CONFIG5L
#pragma config CPO =

#pragma config CP1 =
// CONFIGS5H

#pragma config CPB =
protected)

#pragma config CPD =
// CONFIG6L

#pragma config WRTO

#pragma config WRTI1

// CONFIGG6H
#pragma config WRTC

#pragma config WRTB

#pragma config WRTD

// CONFIGTL
#pragma config EBTRO

#pragma config EBTRI1

// CONFIGTH
#pragma config EBTRB

= ON

ON

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

= OFF

OFF

//

//
//

//
//
//
//

Stack Full/Underflow Reset Enable bit
(Stack full/underflow will cause Reset)

Single-Supply ICSP Enable bit
(Single-Supply ICSP enabled if MCLRE
is also 1)

Extended Instruction Set Enable bit
(Instruction set extension and Indexed
Addressing mode disabled (Legacy mode))

Code Protection Block 0 (Block O
(000800-001FFFh) not code-protected)

Code Protection Block 1 (Block 1
(002000-003FFFh) not code-protected)

Boot Block Code Protection bit (Boot
block (000000-0007FFh) not code-

Data EEPROM Code Protection bit
(Data EEPROM not code-protected)

Write Protection Block 0 (Block O
(000800-001FFFh) not write-protected)

Write Protection Block 1 (Block 1
(002000-003FFFh) not write-protected)

Configuration Register Write Protection
bit (Configuration registers
(300000-3000FFh) not write-protected)

Boot Block Write Protection bit
(Boot Block (000000-0007FFh) not
write-protected)

Data EEPROM Write Protection bit
(Data EEPROM not write-protected)

Table Read Protection Block 0 (Block O
(000800-001FFFh) not protected from
table reads executed in other blocks)

Table Read Protection Block 1 (Block 1
(002000-003FFFh) not protected from
table reads executed in other blocks)

Boot Block Table Read Protection bit
(Boot Block (000000-0007FFh) not
protected from table reads executed in
other blocks)

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 94

defines.h

/**

* Cribbage for People with Reduced Vision
* LED Cribbage Board

* File: defines.h

* Author: Andrew Ashton

*

*

*

April, 2020

***/

#define XTAL FREQ 16000000 // for delay ms() and delay us())

#define TESTBIT (var, bit) ((var) & (1 <<(bit)))
#define SETBIT (var, bit) ((var) |= (1 << (bit)))
#define CLRBIT (var, bit) ((var) &= ~(1 << (bit)))
// general defines

#define max score 121 // maximum score

// SPI - Port Expanders
#define CS1 LATAbits.LATA6 // chip select for Player 1 port expanders
#define CS2 LATCbits.LATCO // chip select for Player 2 port expanders

#define GPIOA 0x12 // address of Port A on any port expander

#define GPIOB 0x13 // address of Port B on any port expander

#define IODIRA 0x00 // address of I/0 control register on any port
expander

#define IOCON Ox0A // address of IOCON register on any port expander

// RF Module defines

#define TEN BIT TIMES 2 // 10 bit times at 9600 bps (1.04 ms) - for delay
#define ACK 0x06 // Command ACK response from RF module
#define NACK 0x15 // Command NACK response from RF module

#define READ 1
#define WRITE O

// RF Module labels
#define DATA TAG 0x02 // Packet data tag value
#define PKTDATA LEN 4 // How many bytes of data in a packet

// RF Module register values
#define SENDP 0x01
#define GETPH 0x02
#define GETPD 0x03
#define GETPHD 0x04
#define CLRRXP 0x05
#define CLROB 0x06
#define CLRIB 0x07

// RF Module register bits
#define EX BUFOVFL 0
#define EX RFOVFL 1

#define EX WRITEREGFAILED 2
#define EX NORFACK 3
#define EX BADCRC 4

#define EX BADHEADER 5
#define EX BADSEQID 6

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

#define EX BADFRAMETYPE 7
#define EX TXDONE 0
#define EX RXWAIT 1

// "Finish" LED (score 121)

#define FINISH RED LATAbits.LATAO // Red cathode of winning LED
#define FINISH GREEN LATAbits.LATAl // Green cathod of winning LED
#define FINISH BLUE LATAbits.LATA2 // Blue cathode of winning LED

// RF Module pins

#define RF_BE PORTCbits.RC6 // Buffer empty, input, active high
#define RF_CRESP PORTDbits.RD3 // Command Response, input, active low
#define RF_EX PORTDbits.RD2 // Exception, input, active high
#define RF POWER DOWN LATCbits.LATC2 // output, active low

#define RF_CMD LATCbits.LATC1l // Command, output, 0 for commands,
data

#define RF_CTS PORTDbits.RD5 // UART Clear to Send, input, active low

#define RF CMD DATA IN PORTDbits.RD6 // UART Data/Command TX
#define RF _CMD DATA OUT PORTDbits.RD7 // UART Data/Command RX
#define RF _RESET LATBbits.LATB5 // output, active low

// Serial number of RF module on Playing Board - used as destination address

// for all RF transmissions.
#define RF_MODULEA DSN3 0x04
#define RF_MODULEA DSN2 0x00
#define RF_MODULEA DSN1 0x07
#define RF_MODULEA DSNO 0x31

//RF Module register non volatile addresses

#define RF _UARTBAUD 0x03 // default 0x01 - 9600 baud

#define RF_DATATO 0x05 // Data Timeout - default 0x10

#define RF MAXTXRETRY 0x07 // default O0x1A

#define RF _ CMDHOLD 0x23 // Hold RF data when /CMD pin low - default 0x00
#define RF MYDSN3 0x34 // MSB - each byte is read only

#define RF_MYDSN2 0x35

#define RF_MYDSN1 0x36

#define RF MYDSNO 0x37 //LSB

#define RF PKTOPT 0x83 // MSB --> 0/0/0/0/RXP_CTS/RXPKT/TXnCMD/TXPKT

//RF Module register volatile addresses

#define RF_IDLE 0x58 // default 0x00

#define RF WAKEACK 0x59 // default 0x01

#define RF _EEXFLAGO O0xCF // LSB of extended exception flags
#define RF_EEXFLAG1 0xCE // MSB of exception flags

#define RF_EEXMASKO 0xD2 // LSB of extended exception mask
#define RF_EEXMASKI1 0xD1 // MSB of exception flags

#define RF_DESTDSN3 0x68 // MSB of destination DSN address
#define REF DESTDSN2 0x69

#define RF DESTDSNI 0x6A

#define RF DESTDSNO 0x6B // LSB of destinatino DSN address
#define RF REG CMD 0xC7 // Write only - No default

enum putch stream {UART, SPI};

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

prototypes.h

/**

* Cribbage for People with Reduced Vision
* LED Cribbage Board

* File: prototypes.h

* Author: Andrew Ashton
*
*
*

April, 2020

**/

void portinit(void);
void uart init(void);
void spi init(void);
void timer0 init(void);

void putch(char data);
unsigned int translate score(char score);

void rf init(void);
void rf receive(void);
void send rf command(unsigned char *cmd, unsigned char cmd len);
void send rf data(unsigned char data);
unsigned char HumProCommand (unsigned char *ecmd,
const unsigned char *rcmd, unsigned char n);
unsigned char HumProRead(unsigned char *cmd, unsigned char reqg);
unsigned char HumProWrite (unsigned char *cmd, unsigned char reg,
unsigned char val);

void portexpinit (void);

unsigned char get port exp addr (unsigned char score);

void write to leds (unsigned char addr, unsigned char gpa byte,
unsigned char gpb byte);

void ssp_ tx done (void);

void display scores(void);

unsigned char reverse set bit (unsigned char char value);

void fun display(void);

96

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 97

Appendix F — Cribbage Board Initialization

All code below is based on the initial prototype with some untested alterations.

portinit.c

/****k*****k*****k*****k*****k*****************************
* Cribbage for People with Reduced Vision

* LED Cribbage Board

* Andrew Ashton

* April, 2020
*****k*****k*****k*****k*****k****************************/

#include "includes.h"

void portinit (void)

{

/*
* Oscillator initialization
* Using 16MHz RC oscillator. Use primary clock determined by value in
* CONFIGIH (INTIO7 - internal oscillator block CLKOUT on OSC2/RA6)
*/

OSCCON = 0x7C;

OSCCON2bits.PRISD = 0O;

OSCCON2bits.SOSCGO = 0;

/*
* PORTA Initialization
* RAO - Winning RGB LED - Red anode - output, active low (sinking)
* - Connects to header J4 - pin 1
* RA1l - Winning RGB LED - Green anode - output, active low (sinking)
* - Connects to header J4 - pin 2
* RA2 - Winning RGB LED - Blue anode - output, active low (sinking)
* - Connects to header J4 - pin 3
* RA3 - No Connection
* RA4 - No Connection
* RA5 - No Connection
* RA6 - /CS1 - Chip select for Player 1 port expanders, output, active

low

* Connects to header J2 - pin 2
* RA7 - No connection
*/

LATA = 0x47; // disable chip select 1 and turn off RGB LED
ANSELA = 0x00;
TRISA = 0x00;

RB6/PGC - In-Circuit Serial Programming Clock
RB7/PGD - In-Circuit Serial Programming Data

*

/*
* PORTB Initialization

* RBO - No Connection

* RB1 - No Connection

* RB2 - No Connection

* RB3 - No Connection

* RB4 - No Connection

* RB5 U4 pin 22 - /RESET pin of RF Module, digital, output
*

*

/

CRIBBAGE FOR PEOPLE WITH REDUCED VISION
LATB = 0x20; // set /RESET for now
ANSELB = 0x00;
TRISB = 0x00;
/*
* PORTC Initialization
* RCO - /CS2 - Chip select for Player 2 port expanders, output, active
low
* Connects to header J2 - pin 3
* RCl - U4 pin 13 - /CMD pin of RF Module, digital, output
* RC2 - U4 pin 12 - /POWER DOWN pin of RF Module, digital, output
* - This output must be pulled high (must not float)
* RC3/SCK1 - SPI clock for all port expanders, digital, output
* RC4/SDI1 - No Connection - this SPI bus is output only
* RC5/SDO1 - SPI Data Out for all port expanders, digital, output
* RC6/TX1 - U4 pin 31 - BE of RF Module, digital, input
* RC7/RX1 - No Connection
*/
LATC = 0x07; // disable chip select 2, pull /CMD and /POWER DOWN high
ANSELC = 0x00;
TRISC = 0x40;
/*
* PORTD Initialization
* RDO/SCL2 - No Connection
* RD1/SDA2 - No Connection
* RD2 - U4 pin 8 - EX pin of RF Module, digital, input
* RD3 - U4 pin 7 - /CRESP pin of RF Module, digital, input
* RD4 - No Connection
* RD5 - U4 pin 28 - /CTS pin of RF Module, digital, input
* RD6/TX2 (UART) - U4 pin 27 - CMD DATA IN of RF Module, digital, input
* RD7/RX2 (UART) - U4 pin 26 - CMD DATA OUT of RF Module, digital, input
*/

LATD = 0x00;
ANSELD = 0x00;
TRISD = 0OxEC;

/*
* PORTE Initialization

* REO - No connection

* RE1 - No connection

* RE2 - No connection

* RE3 - VPP - programmer voltage input
*/

LATE = 0x00;
ANSELE = 0x00;
TRISE = 0x08;

98

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

timers.c

/**

*

*

*

*

Timer Initialization
LED Cribbage Board
Andrew Ashton

April, 2020

**/

#include "includes.h"

~

X% X ok X ok X of

This function initializes TIMERO as:

- enabled

- 16-bit mode

- Using Fosc/4 (Fosc = 16MHz)

- using pre-scaler 1:4

- TIMERO triggers a low priority interrupt

void timer0 init(void)

TMROH = 0x3C;
TMROL = 0xB4;
TOCON = 0x01;
INTCON2bits.TMROIP = 0O;

INTCONbits.TMROIF = 0O;
INTCONbits.TMROIE = 1;
TOCONbits.TMROON = 1;

every 50ms

99

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

uart.c
/**
* Cribbage for People with Reduced Vision
* LED Cribbage Board
* Andrew Ashton
* April, 2020

**/

#include "includes.h"

/%
* Initialization
* asynchronous UART
* 9K6, 8N1l, no flow control
*/
void uart init(void)
{
TXSTA2bits.TXEN = 1;
TXSTA2bits.SYNC2 = 0;

RCSTA2bits.SPEN = 1;
RCSTA2bits.CREN = 1;
SPBRGH2 = 0x00;
SPBRG2 = 0x19;

BAUDCON2bits.BRG1l6 = 0;
TXSTA2bits.BRGH = 0;
IPR3bits.RC2IP = 1;
PIE3bits.RC2IE = 1;

100

101

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Appendix G — Schematics

]

21 zt _

O°Z insy _

T T ¥9ys

6T-¥0-0Z0Z:P=HIPON =380

0Z0Z/ST/T:PE=RD Meq

uojysy maupuy:ig paubisag

|euy =|joajuoy” sbeqgLe

BweN 3|4

uoisip, paanpay yim ajdoad Joy abeqquo

Jajjosuod

YNNILNY
dS-946 LNV

IINA0OKW JY
S¥I-0dd-006-WNH

¥n
LNV
ELLTY — U004
52
AS'E

—

92
JOA

?
sspesn [§

sswnuesBoig

o Q

T 3senuon g (1d5)
Japuedxy 52
J2peay = = Hod
anl =
punaIS = < =
oot o Ll &0 PR
- | —
af o vl —
- — AE'E
/g & w D3N
mi o 7 J2A
57 0||_ -
0aqd] H
Lag ﬁ|_ zn
zag |
£ad| 1
=Tal o
I sagl @
E gaql ©
F 2aal 27
zr
soge g T — _ _
A = = =
%Y 0sQ 1apeay UA0F Japesay
. uopng |, sa4035,, S > uoyng s34,
e lithlll oo Y ows [5
DI _ ar sr ¥r 4
— 42peaH Agg
uopn o A
u__so_,lh u_ﬁ_ﬁ:rH _| =4rios B LN 22n £[J0ppauu0n) 03
v z | 1 [= ssaudel] Bulim BIA g3d 03 pa1Dauuo)
T s 1S PUMS Jamod pue Japjoy Adaneg
AE'E 7 — _
204 TTT M 22N Aizpeg oy 1 1
£€n uonIIUU0) 1_.1
TEAFFAIBTIIL s3I ons e ne—
1 LA =4drp}
. 82
(33
AE'E
oM -
¥OLVIN93Y
arigy IDVLI0A
< LR L2 Ln
iE > A0LS B0 H ﬂ_..m
64 1]
LT =
433304 § F . 20U T F ACE
0} Japeay AE'E 0} Japeay 23A
2JA

102

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Fl _ €4 4 _

I ;mx_ T o T W3S

ST-F0-0Z0T PRIIPON =320

0z0z/ST/TiP=IERND =eg

uojysy maupuy tAg paubisag

|euy preoq ooy abeqguo sweN 34

pieog 37 Joj pieog J3||0J3U0d013iW

uolsip, paonpad yim 2|doad Joy abeqquo

"&[puUe [sispeay eia pieoq (37 Syl 01 51I3UU0D pieoq SIYyL

ITNA0KW 44
$VI-0Odd-006-WNH

p4eCcg 31 o3

A_H pa1suusy Japesy

ts] 0as

5 IS

woge Az
.}e|!|ﬁ_

=

¥n
YNNILNY
dS-9L6-LNY —

-] 0sa

AE'E

1] Z82
1520

£ 40133uUu0) 0}

J03A

i

ssauey Gul
15 YpuUMS Jamod pue Japjoy Alaneg

M EIA g§3d 0} Pa122uUuo)

I I -
ER 4rig) = [
a dror== Juook 2 z2 - .
52 932 - £r
AE'E o =
apeq o}
] 90 N 2y |
zzMsF418L01d 11T 10p3uuo)
- AE'E Lo ,
) 3N aapeaq IS 83 z
aa
[] br Buiuun gy -
T = HOLVIN93Y
PRH wean 7N H JOVLIOA
- ELIT on i
I_._hvm 13 :
1 11
sspean [T 5 1 4
| dswwesbolg - -
g J0A
. «
rl €l 43 H] & L] g £ z 3

103

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Fi _ £l T

T ;mx_ 3 o T w3y

ET-+0-0Z0Z:p=lipo =2EQ

0ZT0E/5E/T:p=3=ar) =eg

uojysy maupuy :Ag paubisag

pieog
AB|[043UCI0LDI O3

— — p=a1r2uuc] J3pesy
T#[euy pieoq Q37 =beqguo iswen 34 W - ._w__O._u:.uu.ULUJ.”n.vumu
p23r3uuc) J3peay
pieog d31 U9 WISSU00LS
: z
UoIsif, paonpsy yiim m-_n_own_ Jdog mmmn_n_._._u 6y 8y Ly w‘
e
782
b R L &
A WA ®
_ 1Zisa
= 371 Gunuuipy DDA
1_.\ Aee_ |
U9s2 J0A
4nojo2> ul uaa4b alde pue sg3q 1 42Aejd ade ysa yum pajjeqe| saal [
® B &3 k) &3 A
Rre ol R < R 2
L | IS Ll ™ IS Ll L | HIS Ll
££VSa 8rvsa 4vsa ZEVSa 1Wsa I
= A ® A S A
e = oas (3] ol " = oas (£3] 37 T oas 182 il
[] Lgtl [L gl (] _ Lal
rEvVSa Lyvsa 21vsa Evsa Zvsa N 5LVSa
®R, LLSEEAIN A wR LLSEZAIN Hg =R LVSEZAIN Hsg
- L || = > < | = || > B | p—a
sevsa _||_ 9rvsa 6LYSa _||_ 0EVSa £vsa . _||_ rIVSa
| R 298] ——r" s | . wR 297 ———_" Hs | . =R 297 ——_—\ s I
9£vsa Srvsa 0ZvSa 6Z¥Sa rvsa £L¥Sa
L5vsa N rYsa 1Zvsa an 8zvsa svsa P Z4vsa
® A 3 A
RR ol o < i) 7
[| Ll ™ Ll Ll | Ll
8cvsa £rYsa zzvsa 1zvsa avsa Hvsa
B Az R Az wR Az
|l [| | [| |l !
L | Ll L | Ll L | Ll
6EVSO Zrvsa £2VSa 9Zvsa 1vsa 0k¥Sa
= A S by 53 A
e ol e ol "e il
[| Ll ™ Ll Ll | Ll
0¥¥sa WYsa ¥Zvsa szvsa evsa 6¥SQ

104

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Fi _ £l T

T “:mx_ 5 4o z s

ET-FO-0T0ZPRYPOW 3320

0Z0Z/CT T:pageaid ;eq

ucqysy malpuy :Ag paubisag

T#[EUY pieoq g3 =beqqua awep 34

pieog a3

uoIsIp paonpay yum ajdoad Joy sbeqquo

Anojo> ul ua246 aJe pue s3] T 42Aejd 248 YSa Yyum paj2qe| saal NWQ

A8 A1 S MISA A1
lad al |l M |
™ IS Ll [l | Ll

s9vsa 08vSa BrVSa vavsa
R 53 R Al a

Y 0as 152 Gl e oas|'| 1s2 <l
™ _ Ll [l _ Ll

99vsa = 6L¥Sa 0svSa = £avsa

"R LVSEZDIN sy wR LVSEZAIN Azt
lad [al |l - | |
L | = Ll L | = Ll

19vsa = m 81vsa 15v¥sa m zovsa

= 22 . J9A
®R 990] ——) A 2R 2077 —— il
89vsa 11vsa

69VSa an 9/vsa £5¥sa
=R, A wR
ld [W] |l
™ Ll ™
0Ivsa SI¥sa #EVSa
= by 3
L} gl [|
LIvsSa FIVSa g5Vsa
=R Ay =R
la [W] |
™ Ll L |
ZIvsa £I¥sa 95vsa

an

105

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Fi _ £l T

T'T A3d _ 9 ES E ¥94ys

&T-+0-0Z0ZP=4IpoW =280

0z0z/ST/TipAiERD Eq

uojysy mMalpuy :Ag paubisag

£#|euy pieoq Q37 2beqquo Ewen 34

pie0gd a3
uolsip, paonpay yum a|doad Joy abeqgquo

Anojo> ul uaalhb aie pue sq37 T JoAepd aue ysa yum pajjeqe] sall

R

.ﬂ/_..l

[|
£HVsSa

oas [3:20]

wR LVSEZAIN

L |
SHVSa

R 207

aLLvsa I
% —

:

o)

Zkn

0ZIvsa

FOLVSa

LLSETdIN

¢ L
60LVSAa

B W,
o g
%3s g 4
Zuvsa L8vSa
oas | |[1s2 A =R
> %
Lvsa zevsa =
A Tz,
L ol %
= P 4
|| 0LvSa £8vsQ
224 A "R 2007

50LWSd

okn

106

Fi _ £l T

T'T A3y _ 9 p© ¥ ¥\9Us

&T-P0-0Z0Z:p=lipoy =&

0Z0e/5E/T:paear) =eg

uojysy maupuy :Ag paubisag

t2[euy pueoq Q37 =beqquo EweN 34

pie0gd a3
uolsip, paonpsy yum ajdoad Joy abegquo

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

UooLS
4Nojod ul pad aJ4e pue sq3] 7 42Aejd aue gsag yum pajleqe| sall vmav
3 ~ R ~ R " 5
™ ™
8vaSa o0as 259 ££680 zeasa oas 259 11980 grasa Al 1gsa
R A & H W, A F
ﬂ_L E\Q - ﬂ_A _r_h ﬂ_k oas''|] zs2 _r_\a
L | _ Ll _ Ll L | _ Ll
17980 = vedSa 1casa - 21980 sKasa - zasa
R ILSEZJIN 5 R LLSEZAIN 5 3 LISEZJIN by
ﬂ_.k L '-_4 .ﬂ_.l - '._\4 AN_.L | r._\n__
[} = Ll (| = Lal [} = Lat!
9¥gsa ‘ll_ 5£680 0£asa _||_ 61980 riasa ‘ll_ £g8q
wR 2017 ——_ s "R 2977 ——UA As R 391] 294 A1

zkgsa

SN N £Ln
wX A3 "R A "X
|l [|l [] |l
™ Ll L | Ll ™
£FESa 8£as0d izasa Zegsa Lgsa
wR A =, = =
< e L e
L] L |
ZFgsa 6E9S0d 9zasa £Zgsa orgsa
"% g wR A =X
|l ! |l [| |l
[l | Lall [l | Lall [|
kasa o¥gsa 5zasdad ¥easa 6880

zh

107

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

7 [o z

I ;mx_ 3 o ¢ WIS

ST-F0-0Z0T P2IPOW =380

0zoz/cT/TiPeIERn 2eg

uojysy maipuy :Ag paubisag

c[euy preoq Q31 20eqquo BweN 3|4

pieog a3
uolsip, paonpay yum ajdoad Joy sbeqquo

vo0LS
ANo|o3 ul paa aJe pue sq37 424eqd s1e gsa yum paj@qe] saal mw_M.
® A, R by
R ol " WIS 'h
L | Ll L | /

02850 AH3IS 59850 ¥98sa 57950
e F] 4 A b=
FE oas [435) [\4 ﬁi oas’|'|'zsa [\4
4 _ L % _ Ll
6,850 = 99950 £9850 = 05850
=R 1LSEZAIN st =R 1LSEZAIW Az

| - = P b | - = ||
8,850 — _||_ 19950 z98sa _||_ 15850
®% 2987 ——2% s wR 5ond] 297 P
11850 89950 19850 zsasa
9,850 I 69950 09850 o £99s0
= A G A
ﬂ/_L [\4 .ﬂ_L [\4
L | Ll L | Ll
5,850 0,850 65850 5850
wR As1 wR A
P » e >
L | Ll |
1850 11880 85850 55850
= A 3 A
G/_L .r._h ﬂﬂ_l .Lh
4 g % Ll
£1950 71950 15850 95950

108

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Fl _ €4

T'T ia3y _ 3

jo 9 ¥3Ys

ST-#0-0Z0T P=IHPON =320

0Z0z/ST/TipeIERID :eg

uojysy malpuy tAg paubisag

g#(euypueeq g3 =BeqqLo

iBWEN 3|4

pieog a3

uoisiA paanpay yum sdosd

Joy abeqquin

ANojod ul paJ 24e pue s3] 7 424ejd 212 gsa ypum paj2qe] sa3ll

T00k=

o]

LLSETONW

A =R
ED P <
£118sa zL8sa
oas||[zs2 A =
L gl 1% _
vi1asa Li8sa T
11SEZdON Ast "R
C - g ¢
olm ‘||_ s11asa oL8sa oim
20A 294 i "R 2an]

LITLIITIL]

0zn

s X
aLigsdad

601950

HIS§
as [4-30]

00Lgsa

—1 37

1uia8a g0Lasa
A =,
L4l [l |
gLLEsa 1ovasa
Ast =R
| |all
Ll [l |
sLLEST 901950
A i,
Ll ™
oziasa 501950

6N

Lorgsa
Az
|!|.
ZoLgsa
s
|!|.

£0Lgsa

LISEEdOW

Az
|.|!|.|

¥0Lasa

8kn

zt L

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 109

Appendix H — Controller Flow Charts

controller

main write_ri_register

Various .]
initializations Lower /CMD line
v
h
Display HumProWrite
'Pleasze stand by” (req_addr, reg_value)
generate command
v
h
transmit
(ready
command) send_ri_command
(cmd)
v
Set state to
“ready”
MNo
Received Ur";‘SRTDﬁ;r:'
< ACK byte? “pon
v
Yes

Time to check

buttons? pushbuttons »
Time to
e rM_receive >

RF receive
buffer?

update_lcd

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Y
read_rf_register Ready ,
(RF_EEXFLAG1) Command?

Mo
L4
Packet in
Receive Error
Buffer? Command?
Mo
L4
write_rf_register
(RF_REG_CMD, GETPD} New Game
Command?
v Mo
Mo v
Module is
Ready?
Scores
Command?
Yes
L 4 Mo
Raise /ICMD line
Y
Mo
Module is
finished?

110
Yes
Set state to
“ready’

Yes
Set state to o
“error 7

Yes
Set state to o

“new game querny’

Yes

State is
“ready™?

Set state to
“scores display

Set state to
“regular gameplay’

¥

Set state to

“guit

Y

Y

Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 111

read_rf_reqgister

Lower ICMD line

Raise /CMD line

v h 4
Set putch stream H“”"F'“JRE?'U
to UART (reg_addr}
generate command
h h 4
)) send_rf_command
printfidata} {emd)
h L4
Lower /CMD line Mo
Command
Repsonse?
Yes
vy
L4
No Transmit No
Buffer UART Error
Empty? Response R;SJESEE
TDB ’
Yes Yes

Y

. Yes .
Exception read_rf_register Return

Triggered? (EEXFLAGO) result

No

Retries?

Return no_comm

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

+1or+5
pressed?

-tor-5
pressed?

No”
pressed

"Scores”
pressed

Yes”
pressed

No

points_plus
(difference)
terncs, | >
no_button :
scores_pution >
yes_button EE—

Fy

112

send_rf_command

Mo

n-=
command
length?

Qutput cmd[n]
on UART

h 4

Mo
Finished

UART
transmission?

Increment
n

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

State is
"regular
gameplay"?

I
new_points + difference
== MAX_POINTS?

increment
new_points
by difierence

Send to LCD:
new_points

~

State is
"regular
gameplay"?

Is

new_points - difference
== (7

decrement
new_points
by difference

Send to LCD:
new_points

£

Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

yes_button

Y

Yes
State is
'regular gameplay™?

new_score
=07

transmit
update command

Clear points
from LCD

transmit
new game
command(1)

v

Mo
v
Yes
State is
'new game query”?
No
L4
Yes
State is

"scores display”?

No

Set state to

previous state

[y

h A

Return

scores_button

v
Yes
State is
‘regular gameplay™?
No
v
Yes
State is
'new game query™?
No
v
Yes
State is R
"scores display™?
Mo
b
Yes
State is 3
"guit"?
Mo
h J
transmit
sCcores
command
»
v
Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Clear points
from LCD

State is

‘regular gameplay™? Feset new_score

transmit
new game
command(d)

State is
‘new game query™?

Y

State is Set state to
"scores display™? previous state

A

Disable
interrupts

A

Send to LCD:

"Mo Communication

Fleaze restart”

Power down
RF module

Turn off WDT

Sleep

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

update_lcd

Yas

State iz
“ready™?

No

Yes

State is
“error-?

Mo

Yes

State is
“new game
query™?

Mo

Yas

State iz
~scores display™?

No

Yes

State is
“regular
gameplay™?

Mo

Sendto LCD: /

"Please stand by /
Send to LCD: /

“Flease Restart
other controller /

Sendto LCD: /

h

“Start new game?” /
Send to LCD: /

h 4

"Flayer 1: w0
Flayer 2: yyy /
Send to LCD: /

h

"Enter points:
Yes to confirn’ /

Mo Mo
new_points new_points
== 121 =490
Yes Yes
Send to LCD: Send to LCD:
“You winl “Skunkead’

h

h 4

Send to LCD:
“Game over

Return

116

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 117

UART RX
IF?

Store UART RX
biyte in nth element
of receive buffer

Y

Mo Mo
Diata Tag/lengt
sensmgﬂnasnedo »_ Last byte of data? > or not last byte Packet is not valid
g ' of data?
Yes Yes
Resetn Increment n »
h 4
Packet is valid 2
Y
Mo
ACKINACK

of length byte? Register Value?

Yes

Y

Command
Response
is notvalid

Increment n Resetn

Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 118

TimerQ IF?

Reset the
TimerQ start value

Y
oy

Clear Timerd IF

— 4

Y
s

Setflag to check
buttons

Setflag to
check for packets

Counter = 247

Increment counter reset counter

Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 119

Appendix | — Cribbage Board Flow Charts

Cribbage board
main send_rf_command

Various
initializations
h 4
lightup .
(player1) y
Y
Mo
h 4 g
! command
lightup :
(player2) length?
Yes
h 4
Enable PWM |
output
OQutput cmdin]
on UART
h J
-
Set state to
“ready” !
Mo o
R S Finished
- B UART
transmission?
Start G0
second timer
Yes
Y !
Yes Inc:renment
Has 60 seconds .
Passed? ———» | sleep_cycle 5

No

Y

. Yes
Time to check
RF Receive ——» M_receive >
Buffer?

Mo

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

read_ri_register
(RF_EEXFLAGT)

FPacketin
Receive
Buffer?

write_rf_register
(RF_REG_CMD, GETPD)

h 4

Module is
Ready?

Raige /[CMD line

h 4

Module is
finished?
Yes

Ready
Command?

Mo

Update
Command?

Mo

MNew Game
Command?

Scores
Command?

ready_response
{player_num)

update_response
(response_data)

new_game_response
(responze_data)

h 4

h 4

fransmit
scores command

F

@

Reset sleep_cycle

counter

Y

120

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 121

read_rf_reqgister

Lower ICMD line

Raise /CMD line

v h 4
Set putch stream H“”"F'“JRE?'U
to UART (reg_addr}
generate command
h h 4
)) send_rf_command
printfidata} {emd)
h L4
Lower /CMD line Mo
Command
Repsonse?
Yes
vy
L4
No Transmit No
Buffer UART Error
Empty? Response R;SJESEE
TDB ’
Yes Yes

Y

. Yes .
Exception read_rf_register Return

Triggered? (EEXFLAGO) result

No

Retries?

Return no_comm

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

eW_game_responsdg

State is
“game aver or
“ready™?

Yes

Response is
“start new game™?

Mo

Mo

Yes

Clear scores

in EEPROM

Y

Clear score

Fy

Y

transmit
scores command

update_leds

Set state to
“regular gameplay

Fy

variables

122

write_rf_register

Lower /CMD line

h i

HumProWrite
(req_addr, reg_value)
generate command

send_rf_command

Return

{cmd})
No UART
Received respoiggr
vie?
ACK byte? TED
Yes

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 123

ready_re T

Y

Yes | "
! ransmi
State is
. , ———————— SCores
s
regular gameplay™? command
Mo
Y
Yes Mo
State is Store state of - Both players o
“ready™? player_num - ready? d
Yes
Mo
v
Yes] Are scores transmit
State is transmit stored in scores
“game over? — Scores EEFROM? command
’ command
Mo
W Set state to
_ Set scores regular gameplay
fransmit to EEPROM
- L
quit command scores
: update_leds
Y
Yes ; it
Sending device o n;fﬂ”;::rl]e
. 2 -~
was player 17 command
4
transmit
Mo new game
command
€ h A 4
4

\

Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

LIDdate_rT

Y

Yes Mo
State is sCcore + new_points
“regular gameplay™? == MAX_SCORE?

Y

Score of
sending player
= MAX_SCORE

h 4

Clear EEFROM
SCores

Y

Set state to
“game over

Y

transmit
quit command

transmit

new game
command

winning_led

h 4

lightup
(player number})

h 4

h i

Update score

of
sending player

A

¥

Save score
in EEFROM

update_leds

"
i

\

Return

124

update_leds

net_port_exp_addn
{previous score)

h A

write_to_leds
(port_exp_addr,
score=0)

h A

net_port_exp_addn
(new scare)

translate_score

Score is for
player 27

Mo

Yes

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Reverse translated
score

i
i

h 4

write_to_leds
(port_exp_addr,
translated score)

translate_score

Qutput byte bit
number = score -
16 * port_exp_addr

Translated score =
all zeros with
output byte bit set

Translated
score =10

Return
(translated score}

get_port_exp_addr

temp_float =
(scored16)-0.0625

port_exp_addr=
truncated
temp_float

Return
(port_exp_addr}

125

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

lightup

Back up current
player score

Counter=10

}
=

Y

Mo

Counter == 120%

k4
Flayer score = Festore score
counter from back up

v
update_led
(player num}

Y

¥
Increment

counter Return

126

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 127

sleep_cycle

Turn off interrupts

N —

Disable
interrupts
v
P —
Enable WDT
-1 h
Clear scores (not
¥ EEPR.OM)
Sleep
(5 seconds)
v h
™y
Disable WDT update_leds
.
k4
Increment
sleep_cycle ¥
counter
Power down
RF module
Enable interrupts
h 4
Ensure WDT
is disabled
sleep_cyce
counter = 107 no_comm
(~ten minutes)
h 4
Sleep

Reset 60
second timer

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 128

UART RX
IF?

Store UART RX
biyte in nth element
of receive buffer

Y

Mo Mo
Diata Tag/lengt
sensmgﬂnasnedo »_ Last byte of data? > or not last byte Packet is not valid
g ' of data?
Yes Yes
Resetn Increment n »
h 4
Packet is valid 2
Y
Mo
ACKINACK

of length byte? Register Value?

Yes

Y

Command
Response
is notvalid

Increment n Resetn

Return

CRIBBAGE FOR PEOPLE WITH REDUCED VISION 129

Mo
Timer2 IF?

Resetthe
Timer0 start value

|

Clear Timer2 IF Increment counter

h 4
.

Clear Timer0 IF

|

W Mo

FWI pulse direction
increasing?

Setflag to check
for packets

Decrement CCPR5L Increment CCPRAL Decrement CCPR5L Increment CCPRAL

h 4 h 4
Set PYWM pulse Set PWM pulse
direction to direction to
decreasing increasing
¥ >
€ h 4 Y
h 4

Return

130

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

Appendix J - Bill of Materials

|]
ST'9TIS] [[2301 qn:
ZEDS 2108 AN-LIGELLONY - +-0588FL-5 =10y yBnaiy L zr) s=peeygn| ¢ [0 B
TEDS 2108 ON-LIGELLONY - -058EFLG =1oy yEna L [=peaygn| z [0 B
2065 £5FS ON-dS-9L6-LNY - d5-81L6-LNY 4o e] zn (yopeids) euumue 20eRZHNGLE| 2 |0 s34
T AN-SY2-Ou<-006-WNH - SYD-OEJ-006-WNH 3INPON OWS-LT N] oz £E ZHINDLG "LEVN JUSIEdSUBLL SINpON JH| € |4 N
A 08 it'08 an-1-821L1-001 - LH905L 01511 01ZE/00Z1 1sa 3InNpop x Ag paaamod - sapesipu 'usaiB g3l 7 |0 s34
TELE 2008 aN-1-00E-66¢ - L¥B10M001816kL BEGE/LLFL Z0 ndnoasp “wniEuel Jngl des| [0 BN
008 oz'0¢ aN-L-B+Z 186 - NLOVEGWEDL 00210 01ZE/00Z1 Lo Buydnoaap "Jugol 'des| z0 |0 s34
0E0E 5108 ON-LOH0EELrG0200WE - HOEELMS02040WE Z102/5080 zd UL UBUno 037 MGET0 WYo0EE Uoissad| (0 s34
{gw) [IETE] Bupiiom oM
=L ud #opuap #Hed abeyoed S () s2mod | no xew | sBenoa uopdiuasag B0 | aquny | 2BV
12555] [=30] gns|
80788 T3 an-3zo6k-ot - Aeybia Sz06L UoRN .1 X Ot 8 |0 s34
o8 2518 aN-L00L-EdD - A2wBig Sz00Edd zn WLIG 6 X WG X WwgZ Bnid joosuuog puegiamed| L |0 s24
ﬂ...n SLE aN-E0¥Z-0E - AawBig E0FE ISE]| SpEs| 0 190 T vv JeplouAepEa) | |0 N
mlm.. g 05 LS an-E00LA - A2wBig FEd6L ¥BJEOL J02A L PIECE p3d| G20 |0 N
8T6S ER:H QN-NUMZH-OFEY-EC) - A2wBig NLUMZH-OF &Y OFdia 3P 0 CUDI Ul SUIGSEW OF 19%905 MM L [0 24
THES zBEs aN-d-ZZ4SE=181 1< - S=wBig JN-ZEASF18121d Ot-dig Ln| 000t wwooe £E PU| 2loqucocuoly "ZEHSESIBIOE | L [0 24
206 zaas ON-FFSED3 - ' NNHENE 9118830564 wnoy jFueg €S| uoHng YsNgEmad 1SS yemms| L |0 24
8EL 68°0 aN-LOFIZMS - AeyBig zz0g-de8 z0dIs SIS OM 2SI LSSS oS | Z [0 24
60 601 aON-HBLE0-dD- I HELE0Td o UYL [Ty SN - ¥2Er Jamagd UoeRuued| L [0 s34
SOl Gzot AN-ZE-9ZLLNYS - AawBig YHI-M-ZEL-WSS 30y ruyl Bap 08 zr| Sunuwesboud “siBue bu wid g uolsuLod| 0 |0 SaA
BZ 0 6208 dN-LOIQG00FNE - ha 1-GOOFNML o0 ey 1a ¥L ‘ADD2 2Poi0 GOOFNL| L |0 N
00 510 AN-LOMOLrFI4D - ha OHOLLM LD o0 ey £u'zd sdnind g2 W0k WSSy z [0 s34
_ﬂu.q 100 ON-H1HOEELrF1D - Aayfig HOEELMFLAD oo ey [§] UL JUSLIND Loims “MGZ0 WuogEE MoiSs3y| L (0 N
0.°0% GE'D anN-Lo+B0L24E - AsyBia TULGIHIKGIAPOLH L°0 [Elpey SO0 Buydnossp ‘4uogl 'des| Z |0 s34
v 180 an-aesL-aLr - Aawbig SOSOLOMI0LEYL [ICEE £2'z0 ‘angL'den| z (o =
9F0s ar'o$ 816Z1d - AawbBig LEETONS-NZ3 L0 ey 1) — - Aiddns samod'os3 ‘ne'@ Jnoge deD L |0 s34
aoug [yl 12Aa Bunpop 10N
L1-T1 wun # Jopusp #Ueg abieyoey sayay (M) 1amog Jusung xew | sBeyop uonduasag fio N ELUE
EETITS | | =301 gns]
| EEEEE 28888 | ON-0F 101D - AeNbig OFI¥81Dd | NaeQUnoAD-Ul FUH ¥l L |0 E
8068 LTS aN-3Z081-9¢€ - AsyBig EGLTS ucifiN WL X OF-F HOPURIS | 8 |0 s34
SULS SO aN-E8FE-0% - Aenbig £0¥T 1va | SPES .0 IR0 T WY Usploy srea L |0 =4
L 2518 aN-L00L-EdD - AawBig Sz00Edd WLIG G X WG X wwgZ Bnid soosuuog puegiamed| | [0 s34
ELITE] 054FS an-2001N - AeyBig ¥B8dE9L ¥BJE8I 003N /L PIEeE H3d| G20 |0 24
TE9s E aN-050043% - a NLMNZHOZ & 0z-dig spw (wuwizg 7} .£°0 WdEID JBE 02 BWPOS M| € [0 24
0zas oLEs aN-G-LLL1-PEL - fewBig YAS0L0d 0z-dig FsERNTER] S5 e £E PV OL WIRIDJEE QT ¢ [0 s34
0E21S sLes aN-2£10803 - \d| 000400} +SZEEFECE 8z-did pm (Wwwzg 7} .£'0 “dX3 O/ ‘BT 1BN0S MM| € [0 s34
8BES FE1E aN-=5/3L1 SETJON - AawBig 4S/3-LISETAON 82-4I04S zn £ir ozh £E ZHW 0L 145 ska 01 Jspueds3 0| ¢ |0 N
8T 6 T8 QN-NUMZH-OPEY-EL) - ha NLUMZHOF &Y ot=dia 3P 0 CUDIY UL SUILDEW OF 19%00S MM L [0 B
¥E LS zBEs ON-dN-ZZHSk318101d - Aayfig JN-Z2H5F18101d Ot-dig Ln| 0ool 00g £E PU| J2|0QUCo0UnN “ZEAGESTBIOE | L | b N
Z06s zoet aN-FFGED3 - 10 JNNHENE 918850584 wnoy |2ued £S uonng usngBmod 1SS ‘yams| 1 [0 B
601§ 601 aN-HBLE0-dD - A=wBig HELEDTS oM ruyL ur] SEW - ¥2ET Jamod Uojesuuen| L [0 =
SoLs sz ot aN-ZE-9ZHLNYS - AewbBig YHLI-M-ZEL-¥SS| a0y nu Bep o zr| BunuwesBaud “sBue 1yBu uid g assuuon| zo [0 B
6T 08 6208 dN-L2IOS00+N L - A=wBig L1-GOOFML ooExy 1a VL ADD2 ‘2PoI0 GOOFNL| L |0 =
0E0E 5108 aN-Looozes - feyBig HOZELIMFLNGD o0 ey] Bumuy yuzuna ydeig Jeg 037 MGT0 WYo0Iz Yssad| ¢ [0 B
Loos 1008 ON-HLHOEELMF13D - Aawbig HOEELMF14D ooExRyY [UL JUSLIND Loyms TMST0 WUoDEE JoisssE| L [0 24
|ozos SE08 aN-LOvB0LDE - AeyBig TULGIHIXGE AR 10 =pEy SO°F0 Budnoasp "Jugo) 'den| ¢ [0 B
v LS 1508 aN-GEBL-BLF - AawBig SOSL0MI0IEYL 10 EpEy £D°Z0 wnjeue “gng) de| ¢ [0 24
or s or'os BLAzhd - fewbig LEEMONINE3 10 EXY 5] - ddns samod'o33 Ng'9 'IN0EE 9ED[1[0 s34,
g [T [T Buro)
[CLT) w0 #IOpUap #1Ueg abeyoey sayay {naw) s2mog Jueano xepy | =Benen uonduasag fio Jequiny ELUE
| 0Z0Z TIT |Udy 332 uomEinay [00°E J2quiny uoisiasy | uoysy mapuy Ag uoisi pEanpay yum =dosg Joy 3Zeqquy swaloly

131

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

09°855 | [E30] qng

oz 0% oz 0% ON-LZ0ZECZZ00-006 - Aewbig \Z0ZETZZO0 £ uonaauuoD Asneg - Y207 uoRoud “uid-z JoReuuoD] L [0 B
L1D$ 108 aN-LOGELLOLY - fawBig 1-0589FL-G ¥ Er PuEDE 037 0} SUeGeaUUe) - uid-g pue ud-g Joesuuon| L [0 534
SULs €25 ON-ZE-22HHAYS - Ie] Yi-L-M-ZEL-YSS i unwwe.Boud “soeydaoas jbue by uid g owsuuod| 0 [0 534
0z 08 0Z'0% aON-2Z0EL0EZ00-006 - Aaybig ZEZ0EL0EZ00 ssawey Buuigy Aepeg - Busnoy "wd-z wojesuue| L 0 s3)
B3 65TS aM-B551-LLE - A=wbig TEDE-HH SpES] 0 JUNCH SISSELD IR T WY JSRIcHAeneE| L 0 534
BT [C¥43 AN-LEEMS - fayBig S000HS-L0L-2 s unopy [pued u-deug “yopmg SpIS ISHS| L |0 534
LD irog an-i-6a1 1001 - Aewbig L1¥90510-L511 ao0zh 0sa snpoy 44 Ag puamod - aWs UsS 031 L |0 s34
9108 oL0% ON-LOHDEELG08040WH - AenBig HOEELMS0S040N 5080 5] 037 JOIEQIPU| SPOYN S 104 'OINS "%G MOISISAE WMO DEE| L |0 534
10z [T§3 ON-1-20E}-E6E - AenBig O-HNDEESLFIEDX GZ-LOS LN AE'E Pax - menBey Buyoms 1soog| L [0 534
o108 oLo$ QON-LD00M 114508040y - Aayfig 001145020420 5080] UolsIsE WUCN L L (0 s3)
8470 8L0% an-L-6212-06F - #awBig WINLHFNIBSHDT unop =oEpng 5] Wye 85 'VZ -HNLF-aEnpdl| L [0 534
TE T oLg ON-L-BF85-06F - A9WBI0| 1ELWAHB0LY L LHDLErDD 0zk 82 L0 AQL3nOL-deD| Z [0 534
oz GLog an-i-o0Le-66¢ - Aewbig 170104001 816FL BTGE G0 'T0°I1D AQL ‘wnEwe] “4ngl-ded] £ [0 s34
LS 18'¥e aN-d5-8L6-LNV - AaiBig dS-016-LNY Unop F0EUNS ANY BULSIUY ZHWOLE| L [0 =3
6T 0P 6Z0FS ON-SYD-Ou<-006-WNH - A=xBig S¥D-0Ed-006-WNH wnopy S0Epng ¥] [H £E SINPOjY JBNS0SUEIL JH THIN GG L |0 s34
rFLS Er 0% aN-g-TL0Z+GL - Aewbig LMDOTISTGENY 00ZL 00 '¥0 €D dupol-den| e o s34
\GES LB'ES ON-LdA-Z2¥F18101d - Aayfig LAI-ZEHFF18L Did Fi-d40L En ¥5G -Pm__ En.n 43||0qUO0CITIN ZEAFPIBLDIE| L [0 534

ESTN] [[EIEa] Buiiom 10N
1301 wun #IOpUSA # ued Byy aBeyoed s3I (pw) szmod | xepy | sBenop uonduosag o N | 2V

LTEITS | =30 gng|

ITES 60 LE aN-vZ06)-0¢ - Aapbig WEOGL uoiAN BVl X OFF UOPUELS| £ [0 S3A
8108 2108 QN-LDGELLDLY - Aawbig 1-0589FL-G 2oy yBnasy) i BpERyERL] L [0 534
9108 oL0¢ ON-LOGELLOLY - fayBig 1-0589+1-G 3joy ybnasy) r Bpeayoxt| L [0 534
ro0s oLo¢ ON-LOH00LLr508040WE - Aawibig H00LLrS02040N 5080] GTT Gl Gl 5037 PaH 104 - QWS "9G JOISISaE WUO 00K ¥ |0 s34
0808 oL'os aN-LD0H95LrS08040WH - AaBig DHO5LrS0204DNY 5080 BH-BY 'EH-LY] ol o0 5037 US2O 10 - QWS '%E UOISISAH WD PE) & [0 534
95 rs TG ON-1-206}-+GL - FenBiQ SHEDHDZISS 18T5E YWY 221d LZiSa LE [T} LT QWS 'Sus1JeS|3 g0y 031 E [0 534
87 rOg 050§ an-g-Bo0z-+a.L - Aewbig EMLADISISTGERY T-001d 0E18Sa-18sa 8L [81 aWs "susJes|D 'PRY 03| 0EL |0 s34
0¥'zas 2r'0$ aN-EZ202+5L - FawBig 1MDDTIETGEVY Z-321d_ 0ZV¥Sa-ivsa Iz al LT aws suaT Jesin "usaig 031 0EL |0 534
0gzes S0ZE QON-OS/3-L1 SEZJON - fawBig OSE-LLSESION 82-DI0S 02N - 6N 5zZ8 _nu ; En.m Bqessauppy ‘sindinc-g) 1dg spuedxg wod) gL 0 534

=T [[EIEa] Buiiom 10N
Iejor wun #Jopusp # ued By abeyoegd s3Iy (pMw)szm0d | s xegy | sBenop uopduosag B0 | aquny | 2RV

132

CRIBBAGE FOR PEOPLE WITH REDUCED VISION

E101 qng |
adAloa0ig [eniu|

OFELIS | [£101 Qns

7508 [ozos QN-LZOZEZEZ00-006 - AaxBig | LZDZEZEZ00 310 uBnoiuL or-r | |“uweD uogng g AisRed - Y007 UoRILS “uId-Z opsuuoD| T [0 s34k
8518 |£e08 aN-LOZENA - AswBia| LEDZEZZZ00 SI0H yBnoiu | 8727 | SIOP3UUST JSH00Y - 90T UoRILL UIS-¢ UopsuueD| (0 [524
0L¥S leezs AN-OETLNAA - A3n0ia| ML ZEZEZ00. I0H ybnomy zr| | @071 - ¥907 UoRdLS “uld f| JORBULOD| Z |0 534
B0TS |eTeE aN-ZE-BZ)LNYS - Aawfig| VH-L-MTEL-VSS #1oH yEnai L i | BunuweBaud “sejdsoss Bus ubu uid g Umesuued) 0 [0 | 53A
008 lozos aN-/20¢1L02200-006 - #a3Bia | LZ0ELOZZ00. ssawey Buuip uopnghisgeg - Busnoy “uid 7 uosuuos| z |0 524
CINES [8z0g ON-LE0% L0ZZ00-006 - AayiBig | LEDELOZZO0 [[SSBWEH BULIA USIME 15%00 - Buisnoy uid-g Josuues| v [0 [s34
0g'Ls |sBos QN-E1Z110L00-E2 - AaubBig | EFLZLLOLO0. [| ssawey Buuiw 007 - Buisnop ‘uid-p) uowsuuos| z [0 s3h
Z00i8 [1oeg ON-8¥1-0E - A=yiBig | oL WNo SISSEYD [[sBn JSpIOS JUNDW SISSEUD B0 2 v J=pioH Asned| Z o [524
T8Gs L T QN-LEEMS - A3yiBig | SO00-IS-£04-D wnopy [Bueg 1s| | Junojy [Pue) ui-deuS “YIWAS SPIS 1SJS| £ |0 524
vLLLE |za8E an-85L Mo - Aenbig| HEG0VEEEED wnay [FuEd [| iegemay p=d) uoRNaUsNd WOW-UO ON-1SES| T [0 [s2h
01518 |soes AN-ZBZIMD - Aabia | 9850va55840 wnop jsued | (rojemoy US2I9) USUNQUSNJ WOW-UO ON-1SdS| Z [0 524
oLgls |s08E an-+azIMD - Aeuibia| MBE0YIEEELD wnop [suEd [[(ioiemoy SuuA) UBHNAUSN WOW-H0 ON-LS2S| 2 [0 [s3A
¥ 0LE |ogzE an-0yago3 - Aswbig| 001 13arLEM wnop [BuEd | 123UL00 Yok (WWE'B).5T0 "UTIMS 500K 1045 ¢ |0 s3h
zos08 [1EF#E8 NEE-MEE-MSN-ZSOLZO-OHN - 454810 MEE-MSN-ZS01L20-OHN Wnoy SisseyD | 88 | 0e 43 [BilEJed "WHORA '3N|Q UO X3 SUUM JEYD Z¥0L-aD1| Z [0 524
FE DS |£#0% QN-1-821 1-00) - A3yBig | L1MO0510-LS1T o0zl 0sa SNpoiN 4u AQ pusmod - QNS "UsI0 031 |0 534
05 TS |a1 0% QN-LDOM0LLrG0800WH - A=nbig | 0101 LrG03040NH 5080 LiaH| AN N - QWS "% UEISISIE WUOH 0L 91 |0 s2h
ZE0S |at0s QN-LDHDEELMG0S040WY - £obia | HOEELIrS0S040WH 5080 b 037 4aEaipy) Spoj 4 102 QNS "%S UISIsBY WUD 0EE| £ |0 524
BES |1oze an-i-zael-gag - Asxbig | O-UINOEESLFIBOX GE-L0S in| AEE pauig - menBay Buyams 1scog |0 s3h
TEns |sLoE | ON-LD00MLL-G080-0Wx - AawBig | 004114502040 | 5080 £d TH| | QNS ‘%G 0SS WUoH L| T [0 s34
S [erog | QN-L-8222-06F - AewBig| WINJHPNJSSGHDT — Wunop soepng [| WYS 85 WE - HNL - J9enpul| Z [0 s34
POPS ETST QN-1-B+BE-06F - 45810 | IELWHB0LYILUDLErDD a0zl 80 10| | AQL3nOL-dED| ¢ (0 s34
05 S |[srog an-1-so/e-sae - faubia) L¥81048018L6FL BZGE §0°20°10| | M@l WnEWEL "SngL -de3] 8 (o s34
To'es [tass aN-d5-0L8-LNY - A=¥bia| SS-0LE-INY unaj soeung ANY| | | BUUSIUY ZHINDLE| Z |0 524
85 08s [Bzore | ON-SWO-Ou-ODE-WNH-AsBia| SwO-DuJ-ODE-WNH unow SoEpng vn| cze | sz £E HNPOW 1BASISUELL SH ZHINOLE] T [0 s34
58S I an-g-zL0z-+6. - AaubBig| LADDZIBZEERY o0zl 80 '¥0 €3] [| 4upaL-des| o o s34
DL ¥E [soze | QN-OS/3-L1 SEZJ0N - Aaxibig | OS/E-LISEZI0N BZ-DI0S| zn| gze | sz £E | SI1qessppy SINAING g1 Ids Jepuediguod] z o 524
z8is LBES QN-LdN-ZZHFPA18101d - 33Bi0 LAI-ZTAFP4181 DI FirdADL en ¥BG o8k £ JBII0RUOOCIIN ZZAFEAIBLDIE| T [0 s34

1oL _ ﬂw..__._:u _ #Jopuap #1ed Giy sbexoey _] _ (M) ssmog | »_Ln_n.._wnz ﬁh_um.._._ uonduasag _ fo w:L_H_nH_.:-__. zs.z_ 3ARIY
(s19|0u3u00 X7 193|J2Y SIaquinp) pJeog J3|j01Iuo)

