

ETTG 1035: Technical Project and Report

CONVERTING EXTRUDER NO. 3 BARREL FROM WATER-COOLED TO AIR-COOLED SYSTEM AT INTEPLAST BAGS & FILMS CORPORATION

by

Bryan Mendoza

2023

Technical Project REPORT

Mechanical Engineering Technology (MET) PROGRAM

Engineering Technologies DEPARTMENT

NEW BRUNSWICK COMMUNITY COLLEGE—SAINT JOHN CAMPUS 950 Grandview Avenue, Saint John, NB, Canada E2J 4C5

Phone: (506) 658-6600 Fax: (506) 658-6578

www.nbcc.ca

DEPARTMENTAL DISCLAIMER

This student's Senior Technical Project – consisting of this Report and a Formal Presentation – received a passing grade based on the criteria set by the MET Program at NBCC Saint John Campus. However, this Report may include mistakes, omissions, and inaccuracies.

Bryan G. Mendoza 2-58 Sewell Street, Saint John, New Brunswick E2L 3A4 April 10, 2023

Mr. Robert Linden MET/STR Coordinator New Brunswick Community College 950 Grandview Avenue Saint John, N.B E2J 4C5

Dear Mr. Linden,

I am submitting my Senior Technical Report, "Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System at Inteplast Bags & Films Corporation," for your evaluation.

This Senior Technical Report was initiated in September 2022. It was made possible through the authorization of the NBCC Mechanical Engineering Technologies Department and the cooperation of my project sponsor, Mr. Ron Loughery of Inteplast Bags and Films Corporation. This project aimed to improve the efficiency of the extruder by converting its barrel cooling system from water-cooled to air-cooled.

This project applies what I learned in school, especially in Mechanical Engineering, to a real industry problem. By applying engineering principles and thorough research through the guidance of my advisor and my project sponsor, I was able to design a solution that could improve the efficiency of the extrusion process with a total cost of \$ 17,431.08. The project involves technical calculations such as sizing blowers and heater bands and designing fins to ensure efficient heat transfer.

Thank you for providing me with the technical writing knowledge and guidance to make this report successful.

Enclosed is my Senior Technical Report, which includes all methodologies for achieving the solution with a summary of the results and recommendations for Inteplast Bags and Films Corporation. Please let me know if you have any questions or require additional information. I am available for further discussion or clarification through my email:<u>bgmendoza.nb@gmail.com</u>.

Sincerely,

Bryan G Mendoza Enclosure: Senior Technical Project

Bryan G. Mendoza 2-58 Sewell Street, Saint John, New Brunswick E2L 3A4 April 10, 2023

Mr. David Fletcher, P.Eng. Senior Technical Project Advisor New Brunswick Community College 950 Grandview Avenue Saint John, N.B E2J 4C5

Dear Mr. Fletcher

I am submitting my Senior Technical Report, "Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System at Inteplast Bags & Films Corporation," for your evaluation.

This Senior Technical Report was initiated in September 2022. It was made possible through the authorization of the NBCC Mechanical Engineering Technologies Department and the cooperation of my project sponsor, Mr. Ron Loughery of Inteplast Bags and Films Corporation. This project aimed to improve the efficiency of the extruder by converting its barrel cooling system from water-cooled to air-cooled.

This project applies what I learned in school, especially in Mechanical Engineering, to a real industry problem. Through your guidance, I was able to design a new air-cooled system. The project's total cost is \$ 17,431.08, which involves equipment such as a three-phase centrifugal blower with a capacity of 489 CFM, 2000-Watts heater bands with a width of 2 inches and a proposed design of fins to improve the heat transfer efficiency.

Thank you for sharing your technical knowledge and providing advice and insights to lead me in the right direction for the project.

Enclosed is my Senior Technical Report, which includes all methodologies for achieving the solution with a summary of the results and recommendations for Inteplast Bags and Films Corporation. Please let me know if you have any questions or require additional information. I am available for further discussion or clarification through my email:<u>bgmendoza.nb@gmail.com</u>.

Sincerely,

Bryan G. Mendoza

Enclosure: Senior Technical Project

Bryan G. Mendoza 2-58 Sewell Street, Saint John, New Brunswick E2L 3A4 April 10, 2023

Mr. Ron Loughery Maintenance Head Inteplast Bags and Films Corporation 291 Industrial Drive Saint John NB E2R 1A4

Dear Mr. Loughery,

I am pleased to submit my Senior Technical Report, "Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System at Inteplast Bags & Films Corporation," for your evaluation.

This Senior Technical Report was initiated in September 2022. It was made possible through the authorization of the NBCC Mechanical Engineering Technologies Department and the cooperation of my project sponsor, Inteplast Bags and Films Corporation. This project aimed to improve the efficiency of the extruder by converting its barrel cooling system from water-cooled to air-cooled.

The project involves technical calculations such as sizing blowers and heater bands and designing fins to ensure efficient heat transfer. Upon doing this project, I recommended using a three-phase centrifugal blower with a capacity of 489 CFM, 2000-Watts heater bands with a width of 2 inches and a proposed design of fins to improve the heat transfer efficiency. The necessary materials for this project cost \$ 17,431.08 for the whole conversion.

I want to thank you for providing me access to your facility to do the study and for your invaluable support and guidance throughout the project. Your insight and suggestions have been beneficial to the project's success. Your willingness to make yourself available to answer my questions and provide me with the necessary data and resources was instrumental in making this project possible.

Enclosed is my Senior Technical Report, which includes all methodologies for achieving the solution with a summary of the results and recommendations for Inteplast Bags and Films Corporation. Please let me know if you have any questions or require additional information. I am available for further discussion or clarification through my email:<u>bgmendoza.nb@gmail.com</u>.

Sincerely,

Brvan & Mendoza

Enclosure: Senior Technical Project

Faculty Advisors in Mechanical Engineering Technology NBCC Saint John Campus 950 Grandview Avenue Saint John, NB E2J 4C5

Winter 2023

Senior MET Students **New Brunswick Community College** Saint John Campus 950 Grandview Avenue Saint John, NB E2J 4C5

SUBJECT: Authorization for Senior Technical Project & Report (STR)

Dear Senior MET Student:

The Mechanical Engineering Technology Department formally authorizes you to carry out the necessary research and application work to complete the program requirement of an STR for ETTG 1035.

This Engineering Technology Project, Report, and Presentation are required by the MET program (TAC-accredited) at NBCC Saint John Campus. The project must address a program-related problem chosen by the individual student and approved by Department Faculty. Requirements include determining a set of deliverables, preparing a formal report, and completing a formal technical presentation. Current guidelines for the project are outlined in the "MET Handbook: Guidelines for Report and Presentation."

On 6 April 2023, please upload two digital copies of the final report to the ETTG 1035 Brightspace Assignment Dropbox. Engineering Technology Faculty (including the Faculty Advisors listed below) will assess the technical content of the report. Communication Faculty will assess format and style. Presentations (i.e. the public oral defense of the projects) will take place after the report is submitted.

The final mark on the full project combines the report marks-both Engineering and Communication-and the presentation mark, less any penalties incurred.

MET Faculty encourages you to consult with them regularly as you research, analyze, and document this technical investigation. As the culmination of your two-year program, this rigorous capstone project provides evidence of the technical knowledge and the professional workplace communication skills you have built.

Best wishes for a successful report and presentation that demonstrate the range of skills you have worked hard to develop within the MET programs at NBCC Saint John Campus.

Regards

54.40)	1	
Colin Bastow 🥿	Cich ?	and the
Dana Betts	Jana the	EF
Bill Chamberlain	Billua	mbule
Jay Fletcher	MA	~

Ted White

(Engineering Technologies Department Chair)

Mauricio Hernandez Milutin Shannon Milutin Graham Moore 4.000

Rob Linden /

(MET STR Project Coordinator)

Fredericton

Miramichi

CONVERTING EXTRUDER NO. 3 BARREL FROM WATER-COOLED TO AIR-COOLED SYSTEM AT INTEPLAST BAGS & FILMS CORPORATION

CONVERTING EXTRUDER NO. 3 BARREL FROM WATER-COOLED TO AIR-COOLED SYSTEM AT INTEPLAST BAGS & FILMS CORPORATION

NAME: BRYAN MENDOZA

ADVISOR: JAY FLETCHER

COURSE: ETTG- SENIOR TECHNICAL PROJECT

SPONSOR: INTEPLAST BAGS & FILMS CORPORATION

DATE: APRIL 10, 2023

TABLE OF CONTENTS

LIST OF FIGURES	V
LIST OF TABLES v	'n
LIST OF APPENDICESvi	i
EXECUTIVE SUMMARY	i
1.0 INTRODUCTION	1
1.1 BACKGROUND OF STUDY	1
1.2 PURPOSE	2
1.3 PROJECT SCOPE/OUT OF SCOPE	2
1.4 METHODOLOGY	3
2.0 PRELIMINARY REVIEW	3
2.1 CURRENT COOLING AND HEATING SETUP	4
2.2 CURRENT HEATING SETUP	5
3.0 HEAT LOAD CALCULATIONS	6
3.1 FACTORS IN DETERMINING HEAT TRANSFER RATE	6
3.2 DETERMINATION OF VOLUME FLOW RATE OF BLOWER	8
3.3 BLOWER SELECTION	0
3.4 HEATER BAND SELECTION	1
4.0 COOLING FINS DESIGN AND CALCULATION 14	4
4.1 COOLING FIN WRAP-AROUND DESIGN14	1
	т
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR	4
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR	4 5
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR	- 4 5 7
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR	4 5 7 8
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR.144.3 SIZING OF FINS154.4 FIN DISTANCE.174.5 FIN DESIGN.184.6 MATERIAL SELECTION19	- 4 5 7 8 9
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR.144.3 SIZING OF FINS154.4 FIN DISTANCE.174.5 FIN DESIGN.184.6 MATERIAL SELECTION195.0 SHROUD DESIGN20	4 5 7 8 9
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR.144.3 SIZING OF FINS154.4 FIN DISTANCE.174.5 FIN DESIGN.184.6 MATERIAL SELECTION195.0 SHROUD DESIGN205.1 DESIGN CONSIDERATION AND MATERIAL SELECTION.20	- 4 5 7 8 9 0 0
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR.144.3 SIZING OF FINS154.4 FIN DISTANCE.174.5 FIN DESIGN.184.6 MATERIAL SELECTION195.0 SHROUD DESIGN205.1 DESIGN CONSIDERATION AND MATERIAL SELECTION.205.2 EQUIPMENT CONFIGURATION21	- 4 5 7 8 9 0 2
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR.144.3 SIZING OF FINS154.4 FIN DISTANCE.174.5 FIN DESIGN.184.6 MATERIAL SELECTION195.0 SHROUD DESIGN205.1 DESIGN CONSIDERATION AND MATERIAL SELECTION.205.2 EQUIPMENT CONFIGURATION225.3 THERMAL AND FLOW SIMULATION DESIGN.23	4 5 7 8 9 0 2 3
4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR.144.3 SIZING OF FINS154.4 FIN DISTANCE.174.5 FIN DESIGN.184.6 MATERIAL SELECTION195.0 SHROUD DESIGN205.1 DESIGN CONSIDERATION AND MATERIAL SELECTION205.2 EQUIPMENT CONFIGURATION225.3 THERMAL AND FLOW SIMULATION DESIGN226.0 MOUNTING DESIGN AND CALCULATION24	- 4 5 7 8 9 0 2 3 4

6.2 BLOWER	
7.0 ELECTRICAL AND INSTRUMENTATION	
7.1 ELECTRICAL DIAGRAM	
7.2 INSTRUMENTATION DIAGRAM	
8.0 PROJECT DESIGN COST	
8.1 SHROUD	
8.2 HEATER BAND, FINS, AND CLAMP	
8.3 BLOWER AND ACCESSORIES	
9.0 COST ANALYSIS	
9.1 COST-BENEFIT ANALYSIS	
9.2 RETURN ON INVESTMENT	
10.0 CONCLUSION AND RECOMMENDATION	
Works Cited	

LIST OF FIGURES

Figure 1 Existing Process
Figure 2 Current setup of Extruder 3 5
Figure 3 Heater series configuration
Figure 4 Typical Centrifugal Blower
Figure 5 Blower Curve of MB 14/5 T2 11
Figure 6 Simple Plastic Extrusion Process
Figure 7 Heat Loss Comparison Chart 12
Figure 8 Typical Ceramic Heater Band 14
Figure 9 Efficiency of circular fins of Length L and constant thickness t
Figure 10 Fin Design
Figure 11 Thermal Analysis of Copper and Aluminum19
Figure 12 Upper Shroud Assembly
Figure 13 Lower Shroud Design
Figure 14 Exploded view
Figure 15 CFD Analysis
Figure 16 Temperature Condition Comparison
Figure 17 Copper Clamp Assembly
Figure 18 Control Panel Configuration
Figure 19 Electrical Diagram per Zone
Figure 20 Process Flow Diagram

LIST OF TABLES

Table 1 Temperature Profile of each Zone	4
Table 2 Summary of Collected Data	7
Table 3 Sizing of Blower (CFM)	9
Table 4 Surface Area for Cooling and Heating for Ceramic Heater Bands	. 13
Table 5 Air and Barrel Characteristics	. 15
Table 6 Fin Characteristics	. 16
Table 7 Calculated Thermo-geometrical parameter.	. 17
Table 8 Physical Characteristics of Air and fin design	. 18
Table 9 Copper and Aluminum Comparison	. 19
Table 10 Shear Stress Calculation	25
Table 11 Tensile Stress Calculation	25
Table 12 Cost of Shroud and Accessories	. 29
Table 13 Cost for Copper and Heater Bands	. 29
Table 14 Cost for Blower and Accessories	. 30
Table 15 Pump operational Cost	. 31
Table 16 Operational Cost Comparison	. 32

LIST OF APPENDICES

APPENDIX A: STR APPROVAL FORM

APPENDIX B: STR FORMAL PROPOSAL

APPENDIX C: STR PROGRESS REPORT

APPENDIX D: DETAILED DRAWING OF THE BARREL

APPENDIX E: TEMPERATURE PROFILE

APPENDIX E: PROPERTIES OF AIR

APPENDIX G: SIZING OF BLOWERS CALCULATION

APPENDIX H: BLOWER SPECIFICATIONS

APPENDIX I: HEATER BANDS CATALOG

APPENDIX J: CONVECTIVE HEAT TRANSFER OF AIR CALCULATION

APPENDIX K: FIN CALCULATION

APPENDIX L: FIN DESIGN

APPENDIX M: UPPER AND LOWER SHROUD DESIGN, FLAPPER, AND CLAMP

APPENDIX N: BOLT CHART

APPENDIX O: BOLT STRESS CALCULATION & COPPER SURFACE AREA

APPENDIX P: BILL OF MATERIALS

APPENDIX Q: RETURN OF INVESTMENT CALCULATION

APPENDIX R: CFD ANALYSIS

EXECUTIVE SUMMARY

Inteplast Bags and Films Corporation is a plastic manufacturing company in Saint John, New Brunswick, that uses an extrusion process at the beginning of production. Extruder barrel No. 3 runs with a water-cooled system with aluminum cast-in heaters. The pump runs continuously even if cooling is not needed. Furthermore, frequent clogging and scaling on pipes cause inefficiencies in the system. Glycol is also used as a heat exchange medium from the plant's temperature-controlled factory, adding to the operating costs.

The report addressed those issues by converting the existing water-cooled into an air-cooled system. Throughout this project, a detailed study of the following was conducted, and calculations were made to achieve the desired solution:

- Heat load calculations to determine the required cooling capacity.
- Sizing up the blower for each zone.
- Selection of heater bands.
- Design of cooling fins for better heat transfer.
- Design of shroud for better airflow distribution.

The report recommends purchasing a three-phase blower to ensure efficient operation with a flow rate of 489 CFM. Additionally, installing five 2-inch heater bands with a heating capacity of 2000W would provide the required heating for each zone with the minimum surface area covered. Furthermore, the fabrication and installation of cooling fins between the heaters were recommended to improve heat transfer efficiency. Lastly, upper and lower shrouds with baffles and louvres were proposed to improve airflow.

The conversion cost \$17,431.08 worth of materials with taxes, but the savings from the conversion were significant. Based on calculations, the conversion could save \$4,672.68 annually, with an expected return on investment of under four years.

1.0 INTRODUCTION

This report gives detailed design recommendations for converting a water-cooled system into an air-cooled system, as requested by the project sponsor. The introduction includes the background of the study, purpose, scope, and methodology.

1.1 BACKGROUND OF STUDY

Inteplast Bags and Films Corporation is a plastic manufacturing company in Saint John, New Brunswick, that uses a blown film extrusion process at the beginning of its production. Part of this process is the extruder barrels that need constant heating and cooling to maintain the desired operating temperature. This extruder has five separate "Zones," which allow a different heat profile to be adjusted along the length of the barrel. These controllers have independent outputs that turn on the heat or cool to maintain the desired temperature setpoint. The heat output energizes a contactor, turning on a resistive heating element when the actual temperature is below the desired temperature. The cool output energizes a solenoid valve which permits the cooling water to flow through the existing barrel heat/cool unit when the actual temperature exceeds the desired temperature.

Source: Original

The barrel on extruder number 3 uses a water-cooled cooling system with a single pump and a reservoir with distilled water as the cooling medium. The heating and cooling were integrated into single-cast aluminum, as shown in Figure 1. The system also uses glycol from the temperature-controlled factory process system as a heat exchange medium for the water. Mr. Ron Loughery, maintenance head of the company, is currently experiencing problems with the setup since clogging and scaling frequently occur along the pipes, which causes a significant setback in the plant operation. Furthermore, the pump runs continuously even if cooling is unnecessary, making it inefficient and adding all up results in higher maintenance costs and loss in production opportunities of the plant during the shutdown.

1.2 PURPOSE

The purpose of this project is to design an air-cooled cooling system and heating system that will replace the existing setup of extruder No. 3 and improve the following:

- Plant's energy efficiency by eliminating continuous equipment running and having a blower for each zone.
- Reduce operating costs by eliminating distilled water and glycol as the cooling mediums.
- Maximize the energy using an improved airflow diffuser integrated into the shroud design.
- Heat transfer efficiency by designing fins for better heat transfer.

1.3 PROJECT SCOPE/OUT OF SCOPE

This project aims to include heat load calculations of the existing setup and the design of an aircooled system to replace the current setup with better efficiency. This consists of the following items:

- Conductive and convective heat rates needed to dissipate heat along the barrel.
- o Sizing of a blower.
- Design fins for better heat transfer.
- Sizing of heater bands as the heating medium.
- Integration of the existing controls into newly installed equipment.

The project's scope is only limited to the design of the air-cooled system and heating system. It does not take into consideration the noise created by the equipment. Furthermore, the effect on the temperature rise inside the plant is also not part of the study, as warm air will be dissipated into the atmosphere after the cooling process. Further investigation to develop a ducting system to redirect the heat to specific areas might be needed.

1.4 METHODOLOGY

The report aims to design a setup that can replace the pump and cast-in heaters with properly sized blowers that can remove the excess heat and install heater bands to give additional heat to the process when needed. This includes a selection of blower for each zone, installation of heater bands along the barrel, design of a shroud system to contain the air and arrangement of fins for better heat transfer.

The report used different areas of Mechanical Engineering disciplines to develop the optimum design. In-depth research on each topic in heat transfer, fluid mechanics, and materials engineering was needed for the project's success. Furthermore, utilizing the expertise of Mr. Ron Loughery and Mr. Jay Fletcher regarding the subject matter gave more precise directions in achieving the project's success.

2.0 PRELIMINARY REVIEW

In a plastic extrusion process, heat is generated by friction between the plastic pellet resin and the walls of the extruder through shear force. This action causes the plastic to melt and flow into the desired output. However, if the temperature is too high, the resin will degrade and can be out of specification. Inversely, if the temperature is too low, the polymer may not fully melt and cannot flow properly, thus blocking the die at the end of the extrusion. This is why cooling and heating are introduced into the system to balance the heat and, therefore, can achieve the optimal temperature.

Furthermore, closed-loop temperature control was used with standard equipment such as a heat source, cooling medium, sensor, and controller. The heat was added and removed from the system using a central controller based on temperature readings from the thermocouple (McGwire). This section focuses on the current heating and cooling setup of extruder No 3.

2.1 CURRENT COOLING AND HEATING SETUP

Brampton Engineering supplied extruder 3 with 4-1/2" 24:1 specification, which has aluminum cast-in fins that operates in a water-cooled system with a 1/2-inch-thick shell and 7/8 inches fins for cooling. Appendix D shows the detailed drawing for the barrel and pump setup. Cooling pipes run through the bottom of the cast-in heater and exit on the other side. The pump uses distilled water to minimize scaling and clogging. It runs continuously so water does not flash to steam, which can cause instability in the process (McGwire). The average change in temperature of the water exiting each barrel was around 87.46 °F (48.59 °C) to maintain the process temperature at 380-400 °F. Table 1 shows the temperature profile for each zone with the inlet and outlet temperature of the cooling water. The data was obtained using FLIR thermal camera. Appendix E shows the recorded temperature in each zone.

Zone	Temperature of the barrel	Inlet temperature of water	Outlet temperature of water	Change in Temperature (∆T)	
1	380	125	213	88	°F
2	400	134	200	66	°F
3	400	99	170	71	٥F
4	390	103	203	100	°F
5	390	97.7	210	112.3	°F
Avorago	392	111.74	199.2	87.46	٥F
Average	200	44.30	92.89	48.59	٥C

Table 1	Temperature	Profile	of each	Zone
---------	-------------	---------	---------	------

Source: Original

Figure 2 shows the current piping setup with the cast-in aluminum heaters of Extruder 3. Leaks were very evident at the bottom of the barrel.

Figure 2 Current setup of Extruder 3 Source: Original

2.2 CURRENT HEATING SETUP

The current heating setup for the extruder barrel involves electric heaters integrated into the aluminum cast-in heaters. The thermocouple sends a signal to the control system to activate the heaters. The heaters are connected in series and supply 9000W of energy whenever heating is needed. Since the pump has a continuous supply, part of the heat given off by the heaters is being cooled. Thick cast-in heaters also add up to the heat required by the heaters. Figure 3 shows one zone with a series of heaters connected and integrated into the cast-in aluminum fins. Note that thermocouples are located in the middle of each zone.

Figure 3 Heater series configuration Source: Original

3.0 HEAT LOAD CALCULATIONS

Heat load calculations were essential in determining the cooling requirements for an extrusion process. It involved determining the amount of excess heat that needs to be dissipated and the air volume flow rate required for cooling. This section considers the factors in calculating heat transfer rates and how they relate to sizing the blower and selecting the appropriate accessories. Relevant literature and industry standards were used to provide detailed calculations.

3.1 FACTORS IN DETERMINING HEAT TRANSFER RATE

Many factors were needed to calculate the excess heat that needed to be dissipated on the barrel. This calculation assumes the system was in a steady state condition and had no external work interactions. Calculation of excess heat needs to be dissipated by a cooling medium with one inlet and one exit with negligible changes in kinetic and potential energies (Cengel, Heat Transfer A Practical Approach 46)

$$\dot{Q} = \dot{m}C_p(T_2 - T_1)$$

Where:

Q= excess heat that needs to be dissipated in BTU/hr

Cp= specific heat of plastic at constant pressure

m= maximum mass flow rate of the plastic

 T_2 = maximum temperature of the barrel without cooling

 T_1 = operating temperature setpoint of the barrel

The project sponsor provided the initial data needed for this computation. The maximum mass flow rate of melted LDPE/LLDPE production is around 850 lb/hr, with a specific heat of 0.52 to 0.57 BTU/lb-F (Vlachopoulos and Strutt).

The equipment does not have any historical data on the maximum temperature of the barrel without cooling; however, relative to the other extrusion process inside the plant that does not have any cooling, the temperature can reach up to 550°F. The operating temperature setpoint of the barrel ranges from 370 °F to 410°F as the mean value.

This resulted in a total of 84,150 BTU/hr (24.662 kW) excess heat that needed to be dissipated to maintain the setpoint temperature. Table 2 shows the summary of data collected and the total amount of heat that needs to be removed from the system for cooling.

Mass flow rate	m	850 lbs/hr
Maximum Temperature	T2	550°F
Setpoint Temperature	T1	390°F
Specific heat of LLDPE	Cp	0.55 BTU/lb-°F
Excess heat	Q	84,150.0 BTU/hr (24.662 Kw)

Table 2 Summary of Collected Data

Source: Original

3.2 DETERMINATION OF VOLUME FLOW RATE OF BLOWER

The aim of sizing a blower is to determine the volumetric flow of air needed to dissipate the excess heat in each barrel zone. Using the following formula and applying the same principle in determining the excess heat:

$$Q_{excess heat} = Q_{needed to dissipate by air} = m_{air}Cp_{air}(T_1 - T_{\infty})$$

Where:

.

 $m_{air} = mass of air$

 T_1 = operating temperature setpoint of the barrel

 T_{∞} = average air temperature

 C_p = specific heat of air

Since the excess heat was already known, the mass flow rate of air needed to dissipate the same heat can be calculated. Using the properties of air from Appendix F, the specific heat of air at constant pressure is 1007 J/kg-K or 0.24 BTU/lb-F. For this calculation, an average temperature of 30°C or 86°F and humidity of 53% account for the worst conditions, as the hottest month in New Brunswick is July (Climate and Average Weather Year Round in New Brunswick).

Using all the available data, the air's volume flow rate can be calculated using the density formula (Cengel, Boles and Kanoglu, Thermodynamics An Engineering Approach).

$$v_{a\imath r}^{\cdot} = \frac{m_{a\imath r}^{\cdot}}{\rho_{a\imath r}}$$

The specific volume can be obtained using the Psychrometric chart in Appendix F with a value of 13.6ft³/lb. This gives a density of 0.0735 lb/ft³

Drocoss			М	aximum Temper	ature Without	Controlled Co	ooling		
Capacity	400	450	500	550	600	650	700	750	800
Capacity	CFM of blower needed for each zones								
lbs/hr									
100	5.49	14.63	23.78	32.92	42.07	51.21	60.36	69.50	78.65
150	8.23	21.95	35.67	49.38	63.10	76.82	90.54	104.25	117.97
200	10.97	29.26	47.55	65.85	84.14	102.43	120.72	139.01	157.30
250	13.72	36.58	59.44	82.31	105.17	128.03	150.89	173.76	196.62
300	16.46	43.90	71.33	98.77	126.20	153.64	181.07	208.51	235.94
350	19.20	51.21	83.22	115.23	147.24	179.24	211.25	243.26	275.27
400	21.95	58.53	95.11	131.69	168.27	204.85	241.43	278.01	314.59
450	24.69	65.85	107.00	148.15	189.30	230.46	271.61	312.76	353.92
500	27.44	73.16	118.89	164.61	210.34	256.06	301.79	347.52	393.24
550	30.18	80.48	130.78	181.07	231.37	281.67	331.97	382.27	432.57
600	32.92	87.79	142.66	197.54	252.41	307.28	362.15	417.02	471.89
650	35.67	95.11	154.55	214.00	273.44	332.88	392.33	451.77	511.21
700	38.41	102.43	166.44	230.46	294.47	358.49	422.51	486.52	550.54
750	41.15	109.74	178.33	246.92	315.51	384.10	452.68	521.27	589.86
800	43.90	117.06	190.22	263.38	336.54	409.70	482.86	556.03	629.19
850	46.64	124.37	202.11	279.84	357.58	435.31	513.04	590.78	668.51
900	49.38	131.69	214.00	296.30	378.61	460.92	543.22	625.53	707.83
Source:	Original								

Table 3 Sizing of Blower (CFM)

Table 3 shows the amount of air needed in ft³/min (CFM) on each process capacity in lb/hr over the temperature difference of the process setpoint temperature and the temperature without cooling. For the data above, 279.84 CFM of air was needed to keep cooling. However, blowers should operate within 80% of their rated capacity. This ensures an adequate bearing and seal life and provides room for heat/ metal expansion (Newton). Accounting for 10% air losses on design and 1.20 factor of safety accepted in the industry, the blower size needed will be around 481 CFM (Goslin). Refer to Appendix G for detailed calculations.

$$volume flow rate CFM = \frac{Calculated CFM x Factor of safety x Air losses}{efficiency}$$
$$volume flow rate CFM = \frac{279.84 CFM x 1.20 x 1.1}{0.8}$$

volume flow rate = $461.7 \ CFM$

3.3 BLOWER SELECTION

Since the volume flow rate has been calculated, determining the actual size of the blower would be the next step. Blowers for industrial use were usually sized up on the capacity and the amount of static pressure generated.

Centrifugal fans are typically used in industry due to their efficiency. Figure 4 shows an overview configuration of a centrifugal blower with casing and impeller blades. In addition, they are easy to maintain or repair due to minimal parts. They can also deliver maximum airflow with higher pressure than axial fans (Pelonis).

Figure 4 Typical Centrifugal Blower Source: Original

For this application, the typical static pressure generated by the shroud was around 0.45" - 0.55" (11.43mm-12.7mm) of water, reducing the blower rating (Goslin). Appendix H is the list of blowers supplied by Motor-Pump-Ventilation.

Another consideration is the selection of the blower motor to be used. For this project, a threephase motor blower was utilized. One of the advantages of a three-phase motor is power efficiency. It consumes 40% less current than a single phase to deliver the same power output. It also has fewer points of failure, thus, longer equipment life (Davis). Though a three-phase motor costs slightly more than a single phase, the cost will offset the long-term use of the equipment.

Figure 5 shows the blower curve performance of MB 14/5 T2 0,25 by universal three-phase centrifugal blowers supplied by Motor-Pump-Ventilation with a rated capacity of 830 m³/hr (489 CFM). This shows that at 0.45 inches of water gauge pressure, the blower can deliver 785 m3/hr (463 CFM) of air, almost similar to the computed volume flow rate needed for cooling under atmospheric conditions. Refer to Appendix H for the calculated blower curve.

3.4 HEATER BAND SELECTION

The barrel is a 180 inches pipe divided into five zones requiring constant heating or cooling. Figure 6 shows the typical process inside an extruder wherein the screw creates a shear force to melt the plastic pellets from the hopper feed (McGwire). Though the barrel screw can generate heat, it is not enough to maintain the temperature needed for the plastic to melt homogeneously. The heater band would replace the bulky aluminum cast-in heater to supply 9000W of heat for each zone.

Figure 6 Simple Plastic Extrusion Process Source: https://www.rapiddirect.com/blog/plastic-extrusion-process/

The ceramic heater bands were chosen to be used in this project over different kinds of heater bands, such as mica bands and mineral-insulated bands, for the following reasons:

- Efficient heat transfer.
- o Minimizes unwanted change in temperature along the barrel.
- Simplified wiring.
- Flexible design for easy installation and removal for maintenance. (Heat and Sensor Technology)

Figure 7 Heat Loss Comparison Chart Source: https://heatandsensortech.com/products/ceramic-heaters/

Figure 7 compares heat loss for insulated ceramic band heaters and non-insulated band heaters. This indicates minimal heat loss value for insulated ceramic band heaters with a gradual increase in slope.

Another design consideration in selecting heater bands is the heat surface ratio that the heater bands occupy on the barrel. Since cooling was also needed in the system, sufficient exposed surface area to allow proper cooling should be considered. Each zone along the 8-inch barrel was 20 inches long with a total surface area exposed of 502.65 in². Appendix I is the catalogue of different ceramic heater band products from Tempco for different barrel diameters with widths and wattages. Since a 230V 60Hz electrical supply powers extruder No. 3, the selection may be narrowed down with Table 4.

Inside Diameter (Inches)	Width (Inches)	Wattage	Heater Band per Zone	Total Wattage	Total Surface Area per Zone in ²	Surface Area for Heating in ²	Surface Area for Cooling in ²	Percentage
8	1.5	770	12	9240	502.65	452.39	50.27	90%
8	2	2000	5	10000	502.65	251.33	251.33	50%
8	4	3000	3	9000	502.65	301.59	201.06	60%
8	6	3500	3	10500	502.65	452.39	50.27	90%

Source: Original

Each barrel needs at least 9000 Watts of heat to maintain process requirements. Table 4 shows that five ceramic heater bands with a width of 2 inches will generate 10,000W of heat, only occupying 50% of the surface area, leaving 251.33 in² for cooling. Since the barrel consists of 5 zones, a total of 25 of the 2-inch heater bands were needed and appropriately spaced to maintain the desired heat. Figure 8 shows the heater bands' basic parts: ceramic fibre insulation, threaded stud terminals, barrel nut clamp and stainless-steel case.

Figure 8 Typical Ceramic Heater Band Source: Original

4.0 COOLING FINS DESIGN AND CALCULATION

This section includes the design of cooling fins. Calculations of length and spacing were discussed, and the convective heat transfer coefficient of air was determined. The report came up with two designs, and recommendations were made based on the ease of fabrication. Material selection of the fin was also discussed in this section.

4.1 COOLING FIN WRAP-AROUND DESIGN

Cooling fins are commonly used in the industry to dissipate heat faster as it increases the surface area of the material to be heated or cooled. Fins extending from the wall into the surrounding fluid will increase the forced draft blower's convection rate (Incropera, Dewitt and Bergman 139). For a 20-inches long zone section, 50% will be allotted for fins. For equally spaced 2-inch heaters bands, an optimum fin width design must be determined to maximize heat transfer.

4.2 CONVECTIVE HEAT TRANSFER COEFFICIENT OF AIR

Air's convective heat transfer coefficient was determined to calculate fin characteristics. For this application, the approximated value of the heat transfer coefficient for airflow may be determined using the below empirical formula (Convective Heat Transfer).

$h_{cW} = 12.12 - 1.16v + 11.6v^{\frac{1}{2}}$

Since the formula was derived using SI units, air velocity was determined using Table 5 below. Appendix J shows the detailed calculation for the convective heat transfer coefficient of air.

Variable	Definition	Va	lues
Do	Diameter of the Barrel	0.203	m
L	Length of Barrel per section	0.508	m
q	Flow rate of Air	0.2179	m ³ /s
А	Flow area of Air	0.324	m ²
V	Velocity of Air	0.672	m/s
	Convective Heat Transfer		
h_{cw}	Coefficient	20.849	W/m ² -C

Table 5 Air and Barrel Characteristics

Source: Original

4.3 SIZING OF FINS

The next step is to determine the length of the fins. It is essential to consider the proper fin length L for the design. Figure 9 shows the efficiency curve of circular fins of length L at constant thickness with respect to a geometrical parameter on the x-axis. The longer the fin, the larger the heat transfer area, but there are drawbacks such as weight, fluid friction and price.

Figure 9 Efficiency of circular fins of Length L and constant thickness t Source: Cengel, Heat Transfer A Practical Approach, pp. 162

Typically, "the efficiency of most fins in practice is above 90 percent" (Cengel, Heat Transfer A Practical Approach 163). For this calculation, 92% efficiency was used to determine the length L of the fin.

Since the table was derived in SI units, the following data in Table 6 were used:

Parameters	Values
r 1	0.127794 m
r ₂	0.1143+L m
t	0.0008128 m
Efficiency	92 %
Efficiency curve	1.2

Table 6 Fin Characteristics

Source: Original

A Gauge 20 material with an equivalent thickness of 0.8128 mm was used in the project. The thickness was selected for ease of fabrication and weight consideration. An efficiency curve was determined by trial and error to match the calculated length "L" to the estimated value of "L" on the geometrical parameter (x-axis). Appendix K shows the detailed calculations of fin size.

Using the formula from Figure 9:

Efficiency Curve =
$$\frac{r_2 + 0.5t}{r_1}$$

Where calculated L is 0.0247 m or approximately 1 inch.

Checking for the value of L using the following formula for thermo-geometrical parameter:

$$\varepsilon = (L + \frac{1}{2}t)\sqrt{\frac{h}{kt}}$$

16

Where:

ξ from table	0.19	
L	0.02515235	m
h	20.84949675	W/m²-C
k	401	W/m-C
ξ calculated	0.2044	

Table 7 Calculated Thermo-geometrical parameter.

Source: Original

Table 7 shows the value of the thermo-geometrical parameter from the graph and the value from the above calculation. The graph analysis reveals that the value of the thermo-geometrical parameter closely matches the calculated value. Moreover, the calculated Length L falls within an acceptable range of the value obtained from the graph.

4.4 FIN DISTANCE

To maximize the cooling effects of fins, the optimum distance must be determined. "Fins that are closely packed will have greater surface area for heat transfer; however, because of the extra resistance on the additional fins, it reduces the heat transfer coefficient of the fluid" (Cengel, Heat Transfer A Practical Approach 474).

Using the formula:

$$S_{optimum} = 2.714(\frac{L}{Ra_L^{0.25}})$$

Where:

$$R_{aL} = \frac{g\beta(T_S - T_\infty)L^3}{\nu^2}$$

Parameter	Definition	Values	Units
g	Gravity	9.81	m/s ²
β	coefficient of volume expansion 1/Tf for ideal gas	0.00231541	°C
Tf	Film Temperature	158.8888889	°C
Ts	Process Temperature	287.78	°C
T∞	Ambient Temperature	30	°C
L	Length	0.960988688	m
V	Kinematic Viscosity	0.00001608	m ² /s
Pr	Prandtl Number	0.7282	
Ra∟	Rayleigh Number	14634431778	

0.007498668

m

Table 8 Physical Characteristics of Air and fin design

Source: Original

Soptimum

Table 8 shows the physical characteristics of air from Appendix F. From the calculations optimum distance was around 3/8 inch. Appendix K includes detailed calculations for fin distance.

4.5 FIN DESIGN

For this project, two fin types were designed to maximize heat dissipation. Refer to Appendix L for the fin design variation with dimensions. However, Figure 10 was chosen because of its effectiveness and ease of fabrication. Each zone would need 12 fins to maximize the surface area designed for cooling. The fins would be tightened

0.295

in

Figure 10 Fin Design Source: Original

securely by a locking mechanism fabricated to hold them firmly in place. Appendix L shows the detailed drawing for the annular fins and locking mechanism, which can be fabricated in-house. Installation of these fins should be staggered on each slot to allow maximum airflow in between.

4.6 MATERIAL SELECTION

Due to their thermal conductivity, aluminum and copper are two of the most typical materials commonly used in fin manufacturing. Table 9 shows the comparison of the two metals with their respective properties.

Characteristics	Copper	Aluminum
Thermal Conductivity (W/m-K)	401	237
Density (kg/m ³)	8933	2702
Price/ metric ton (as of December		
2022)	\$8,375.40	\$2,401.69
Melting Point (K)	1358	933

Table 9 Copper and Aluminum Comparison

Sources: Heat Transfer: A Practical Approach (Cengel) https://ycharts.com/

Though copper's thermal conductivity almost doubled by aluminum's value, their price was a significant factor in the project's design.

Figure 11 Thermal Analysis of Copper and Aluminum Source: Original

Using Computer-Aided Design (SolidWorks), thermal analysis between copper and aluminum has been simulated using peak temperatures inside the barrel. Figure 11 shows the temperature profile on each node taken across the barrel and the fins. From this result, copper has a higher

average temperature conducted through natural convection over aluminum. The simulation was conducted in a steady state condition with 405°F (210°C) as the maximum temperature inside the barrel. The average temperature on the tip of the fins was 191°C for copper and 186 for aluminum. Since time delay in cooling and heating is very critical for the application of the project, copper fins were recommended to be used. Though copper is more expensive than aluminum, it would offset the price by the cost of operation over time by reducing the time for cooling, thus saving energy in running the blowers.

5.0 SHROUD DESIGN

This section covers the design of the blower shroud and the process of choosing the suitable material. Thermal and flow simulation was done to come up with the optimal design.

5.1 DESIGN CONSIDERATION AND MATERIAL SELECTION

One of the most important design considerations for the project was the blower shroud. The shroud channels the forced air from the blower to the barrel and fin's exposed surface area. It is also essential for safe operation since the shroud covers the hot barrel preventing any exposed hot surfaces. This project's design comprises an upper and lower shroud connected by a socket head cap screw in between for faster installation and troubleshooting. Figure 12 shows the upper

Source: Original

shroud with equal space slots to allow maximum air retention time of air inside, thus facilitating better heat transfer. Louvres were installed on the air outlet, which opens when the blower operates, directs the air out, and closes when it turns off. This would decrease the heat loss due to natural convection and radiation when the system needs heating and heater bands are activated.

On the other hand, the lower shroud would be connected to the main blower, housing the electrical components of the heater bands on the side. Slotted holes were made with just enough room for wires. This enhances the airflow rate by minimizing losses coming out of the side of the shroud and then being covered by a plate flange. Baffles were also designed at the entrance of the air coming out of the blower to direct the flow of air to maximize forced convection. Figure 13 shows the cross-sectional drawing of the lower shroud. Guage-11 or 0.125" thick 304 Stainless Steel was chosen to fabricate the upper and lower shroud and electrical slots. Stainless steel is suitable for this application due to its corrosion resistance. Aside from the ease of fabrication when dealing with stainless steel plates, SS304 is 40% lower in price than its counterpart SS316. For the application of products not exposed to chemicals or marine environments, 304 is a practical and economical choice (Geise). Appendix M shows the detailed drawing for the upper and lower shrouds.

Figure 13 Lower Shroud Design Source: Original

5.2 EQUIPMENT CONFIGURATION

Each zone comprises five 2-inch ceramic heater bands spaced evenly along the barrel. The approximate distance for each heater band was 2 inches. The cooling fins fill those gaps, three for each space and 12 fins for each zone. Four copper clamps hold the whole assembly and tighten securely by socket head screw. The upper shroud consists of slotted airways along the top and 12 flappers for the airways. Note that the middle was intentionally left without a flapper to make room for the thermocouple. The lower shroud has nine air baffles to direct the air, especially to the side of the assembly. Finally, a cover for the lower shroud for the electrical access must be installed with nine slots to ensure minimal air loss and dissipate heat accumulated by the heater wires. Figure 14 shows the exploded view of one of the barrel zones. This configuration would be the same for all five zones along the barrel.

Figure 14 Exploded view. Source: Original

5.3 THERMAL AND FLOW SIMULATION DESIGN

Using Computational Fluid Dynamics (CFD) to determine the behaviour of parameters such as airflow and temperature profile of the barrel, a test was conducted for the actual condition of the barrel. For the simulation, one barrel zone was used for the study and the maximum temperature of 405°F (207°C) for the molten plastic. A temperature of 30°C (85°F) for air was used for the simulation, which is the average temperature during summer. Figure 15 shows how forced air distribution dissipates heat in the barrel zone at a given time. Red areas show the average temperature of the air at 83.29°C and a 53.29°C change in temperature from the air inlet to the air outlet. Furthermore, the heat transfer rate of the barrel was 3,486.877 Watts, and the convective heat transfer of air around the barrel was around 611.011 watts.

Source: Original

A detailed study conducted using CFD and flow simulation is found in Appendix R. As a comparison for the analysis, for the same boundary conditions of a single zone, Figure 16 shows the temperature gradient on the cross-sectional area of the barrel with and without fin conditions. This confirms the effectivity of the copper fins along the barrel, as the temperature on the outer surface is much lower than those without fins.

Figure 16 Temperature Condition Comparison Source: Original

6.0 MOUNTING DESIGN AND CALCULATION

Since most of the materials used were stainless steel, the bolts were also stainless steel for the same reason stated in the shroud section. A standard 5/16" socket head cap screw was used for initial calculations.

6.1 SHROUD

For this calculation, the identified critical component for the fastener would be the barrel clamp shown in Figure 17. The detailed specifications for fabricating copper clamps to hold the assembly can be found in Appendix M. For this setup, if the upper shroud is removed, only four bolts would hold the entire assembly along the barrel. Basing all shear stress calculations for the bolt on this location would be ideal.

Figure 17 Copper Clamp Assembly Source: Original

This arrangement was a single shear due to the single cross-section area of the bolt applied in shearing force (Mott and Untener 34). Using the formula for direct shear stress below, the shear stress of 231 psi and way less than the allowable shearing stress of the bolt from Appendix N. Table 10 summarizes the calculation for the direct shear stress of a single bolt.

Direct shear stresses
$$\boldsymbol{\tau} = \frac{Force}{Shear area} = \frac{F}{A_s}$$

	SHEAR					
Force F	Weight of the lower shroud and blower	35.435	lbs			
Area	Shear area of the bolt	0.0767	in ²			
Direct Shear	Two bolts carrying the load	231	psi			
Maximum Shear	Maximum allowable shear strength	3450	psi			
Decision		SAFE				

Source: Original

A ¹/₄"-standard socket head screw was used for the lower shroud cover since minimal load or force is acting. Appendix N also recommends tightening torque for each bolt at 170 in-lbs.

6.2 BLOWER

Bolts on the blower would be subjected to tensile load since they carry the actual weight of the blower. The vibration created by the equipment was also considered for the design. Using the same formula for the stress, Table 11 shows the tensile stress calculation.

Table	11	Tensile	Stress	Calculation	

TENSILE					
Force F	Weight of the blower	15.435 lbs			
Area	Area of the bolt (Minimum Diameter)	0.07321 in ²			
Direct Shear	Four bolts carrying the load	52.7112 psi			
Maximum Shear	Maximum allowable tensile strength	4200 psi			
Decision		SAFE			

Source: Original

It was also recommended to use nuts and washers and tighten them according to the correct specification to ensure bolts do not loosen during operation.

7.0 ELECTRICAL AND INSTRUMENTATION

This section covers Electrical and Instrumentation aspects related to integrating the new equipment into an existing setup. It provides a detailed schematic wiring diagram for each zone, showing the connection for each piece of equipment integrated into the existing controllers. Meanwhile, the instrumentation diagram examines the controllers used to regulate temperature setpoints and how the controller reacts to temperature changes in each zone. Figure 18 shows the existing configuration of the controllers. This setup remains since it has provisions to change from a water pump to a set of blowers.

Figure 18 Control Panel Configuration Source: Original

7.1 ELECTRICAL DIAGRAM

Figure 19 shows the schematic wiring diagram of each zone integrated with the existing setup. Primarily, the thermocouple sends the signal to the model 2208e controller, which then dictates if it needs to activate the heater through the power regulator controller or turn on the motor blowers. Heaters run into a single phase, while the blowers run in a three-phase system. Blowers need magnetic contactors for ease of installation and the operator's safety (Aaron Lee; Chad Flinn). The diagram was referenced from the Installation and Operation Handbook of 2208e and 2204e Controller provided by the project sponsor.

Figure 19 Electrical Diagram per Zone Source: Original

7.2 INSTRUMENTATION DIAGRAM

For controlling temperature setpoints and operation of the blowers and heaters, 'EUROTHERM' model 2204e is currently used in the same equipment running into a water-cooled system. The current instrumentation controllers can be integrated into the new design, and the diagram below shows the current setup and the modification needed for the new setup. These controllers do not need any coding and can be manually installed. Figure 20 shows the block diagram of the

controller for the new setup. The design was patterned to the old process and adapted to the proposed project. The process starts on the thermocouple that sends the signal to the controller. The control then decides what error must be corrected. From then, PID controls whether it is for cooling or heating. This cycle continues and turns the blower and heater bands on and off until the desired temperature is achieved.

Figure 20 Process Flow Diagram Source: Original

8.0 PROJECT DESIGN COST

The cost of materials can be divided into three parts: shroud and accessories, heater bands fins and clamp, and blowers and accessories. Since this project was a major conversion, the initial cost of procuring all the materials was relatively high.

8.1 SHROUD

The upper and lower shroud must be fabricated using Stainless Steel 304 material. Due to its complex design and the limitations of tools, shrouds cannot be fabricated in-house; therefore, they must be outsourced. Tempco offers fabrication of existing designs for upper and lowers

shrouds for an average of USD 975.00 each or CAD 1,327.80 (Goslin). Table 12 shows the summary of the cost for the shroud and accessories.

EQUIPMENT	QUANTITY	PRI	CE/UNIT	тот	AL PRICE
Shrouds	5	\$	1,327.80	\$	6,639.00
Bolts 5/16"	20	\$	0.69	\$	13.80
Nuts 5/16"	20	\$	0.17	\$	3.40
Washer 5/16"	20	\$	0.11	\$	2.20
Bolts 1/4"	90	\$	0.57	\$	51.30
Nuts 1/4"	90	\$	0.12	\$	10.80
Washer 1/4"	90	\$	0.14	\$	12.60
Total					6,733.10
Grand Total with Tax					7,743.07

Table 12 Cost of Shroud and Accessories

Source: Original

8.2 HEATER BAND, FINS, AND CLAMP

Fins and Barrel clamps can be fabricated in-house at the workshop using basic tools. Appendix M shows the dimensions for each design. For this calculation, manpower hours and consumables were not included in the computation. A total of 4510.0 in² or 31.32 ft² of the copper plate was needed to manufacture all fins, clamps and locking mechanisms.

A 2"-2000Watts heater has been selected for the heater band. Since mounting and bolts were included in the package, they were not included in the cost calculation. Table 13 shows the cost of each material.

EQUIPMENT	QUANTITY	PRI	CE/UNIT	тот	AL PRICE
Copper Sheet				\$	1,225.98
(8x4ft)	2	\$	612.99		
Heater Band (CEH- BCH00086)	25	\$	141.29	\$	3,532.25
Total					4,758.23
Grand Total with Tax					5,471.96

Table 13 Cost for Copper and Heater Bands

Source: Original

8.3 BLOWER AND ACCESSORIES

Table 14 shows the cost of blowers and auxiliaries needed for the conversion. Commercially available blowers can be purchased within the specifications required for each zone. Referring to Figure 16, only the Model 2208e controller can be reused for the existing setup; therefore, all the equipment on the proposed configuration must be purchased. Insulated copper wire with 16 to 22 AWG (American Wire Gauge) must be used per the manufacturer's recommendations.

EQUIPMENT	QUANTITY	PRI	CE/UNIT	тот	AL PRICE
Blower	5	\$	432.40	\$	2,162.00
Three-Phase Mini					
Circuit Breaker	5	\$	76.52	\$	382.60
Magnetic Contactor	5	\$	56.75	\$	283.75
Power Regulator Single Phase	5	\$	54.76	\$	273.80
Switch Selector	5	\$	28.00	\$	140.00
Copper Wire	2	\$	202.29	\$	404.58
Bolts 5/16"	20	\$	0.69	\$	13.80
Nuts 5/16"	20	\$	0.17	\$	3.40
Washer 5/16"	20	\$	0.11	\$	2.20
Total					3,666.13
Grand Total with Tax				\$	4,216.05

Table 14 Cost for Blower and Accessories

Source: Original

This sums up to \$ 17,431.08 of material cost to complete the project. Appendix P is the list of websites for the price reference of each item.

9.0 COST ANALYSIS

The focus of this section is to evaluate the cost associated with converting a water-cooled system into an air-cooled one. This section discusses the financial implications of the project and how this project would be beneficial for the company in the long term.

9.1 COST-BENEFIT ANALYSIS

As stated above, the conversion cost for this project was \$17,431.08. While the initial investment required for this conversion was significant, long-term benefits and operational efficiency improvement could lead to substantial cost savings over time. This section focuses on the running cost comparison between the two setups. Assuming the pump runs 350 days a year, 24 hours a day. The remaining days were assigned for scheduled pump maintenance. Plant record also shows that they consume around 1.5 gallons of water daily and must top up. Since the whole plant has a central factory for glycol, this cannot be quantified on a daily basis. However, a 10% glycol consumption based on distilled water has been assigned for this calculation. Prices were sourced from Appendix P.

Yearly Operating Cost of Pump						
	Quantity (gal) Price/Unit Total Cos					
Glycol	52.5	36	\$ 1,890.00			
Distilled						
Water	525	3.63	\$ 1,905.75			
Running Cost			\$ 1,337.25			
		Total	\$ 5,133.00			
Grand Total with Tax \$ 5,902.95						

Table	15	Pump	operational	Cost
-------	----	------	-------------	------

Source: Original

Table 15 summarizes the operational cost of running the water-cooled system and auxiliaries. It includes using distilled water and glycol and running the pump annually. On average, Saint John Energy charges around 10.67 cents per kWh (Saint John Energy Rates). The operating costs do not include the glycol cooling in the central cooling factory, which will add up to the cost reduction after conversion. Additionally, there was a significant energy cost difference between the two systems. Studies show that air cooling systems save between 7 percent to 80 percent of electricity compared to water cooling (McGwire). On a conservative assumption of 20% saving, the cost to operate an air-cooled system is around \$ 1,069.8, significantly lower than operating a water-cooled system. Table 16 shows that an annual saving of 79.2% in terms of operating costs can be achieved by switching to an air-cooled system.

Yearly Operating Cost of Blowers					
Running Cost \$ 1,230.27					
Savings					
Overall Saving	\$ 4,672.68				
Annual Saving Percentage	79.2%				

Table 16 Operation	onal Cost	Comparison
--------------------	-----------	------------

Source: Original

9.2 RETURN ON INVESTMENT

The analysis of the ROI for this project was focused on cost savings. This project aimed to reduce the opportunity lost in production due to frequent shutdowns. Extruder 3 can generate \$18,000 of profit in a 24-hour operation, provided that no unforeseen shutdown may hinder production. In addition, the company lost \$750 per hour every time there was a problem with the water-cooled system.

Moreover, pump systems for industrial setup commonly have a lifespan of 15 to 20 years (U.S. Department of Energy). Considering that Extruder 3 has been in use since 1992 and has been operational for almost 31 years, the company should upgrade the equipment to meet the demand. In contrast, a high-quality fan may last up to fifty years, provided it receives regular service and maintenance schedule (What is an industrial fan's life span?).

As mentioned, the expected annual cost savings is \$4,672.68 per year. Doing the calculation would result in the following:

Payback period: \$ 17,431.08 /\$ 4672.68 = 3.73 years

Total expected cost savings over equipment life: 4,672.68/year x 50 years (life expectancy of blowers) = 233,634.

Total Expected Return on Investment (ROI): $(233,634/17,431.08) \times 100\% = 1,340.33\%$ Based on the calculations above, the project was economically doable, with a payback period of around three and a half years. Over the lifespan of the blowers, the expected ROI was 1,340.33\%, indicating that the project has excellent potential to provide significant returns in terms of savings. Note that the computation does not include income generated by the machine due to equipment upgrades. The project is a wise investment with relatively short payback and significant potential profits.

10.0 CONCLUSION AND RECOMMENDATION

This project focuses on converting water cooled system into an air-cooled system. As stated in this study, conversion has many benefits, such as cost-effectiveness, less maintenance, and energy efficiency. This also eliminates the need for distilled water and glycol as part of the water-cooled system.

This report can be summarized into four categories.

- Determining the size of the blower based on heat calculations.
- Proper selection of heater bands for heat load demand
- Designing a shroud that can improve the airflow.
- Installation of fins for better cooling.

Based on the calculations, purchasing a three-phase blower was recommended since it draws less current when starting. Furthermore, five heater bands with a heating capacity of 2000W must be installed along the barrel to meet the maximum heat demand of 9000 W when in need. The 2" heater band was chosen because it has the best surface area ratio for cooling and heating. Installation of fins would help the heat transfer, thus saving energy in running the blowers. It is recommended to fabricate the fins in-house to minimize the cost of production. Finally, a shroud design with baffles to direct the airflow and flappers on the air outlet to minimize natural convection and radiation would add to a more economical design.

Further study is recommended to add variable frequency drives (VFD) for each blower. The installation of VFDs can help regulate the speed of the blowers, resulting in significant energy savings instead of just turning them on or off. In addition, a study to capture the heat dissipated and redirect it to the areas where it can be useful can add up to the plant's overall efficiency.

It is also recommended that the new equipment assembly be installed during the equipment schedule maintenance shutdown so as not to disrupt the regular operation.

At a total cost of \$ 17,431.08 for the whole assembly of the conversion, Inteplast Bags & Films Corporation could maximize the equipment's capacity by increasing throughput and decreasing downtime. Overall, the project shows a return on investment in less than four years and a 1,340.33% return on savings over the equipment's life span, which aligns with the company's goal for continuous improvement.

WORKS CITED

- Aaron Lee; Chad Flinn. *Basic Motor Control*. 2020. Web Page. April 09 2023. https://opentextbc.ca/basicmotorcontrol/chapter/magnetic-motor-starters/#:~:text=For%20the%20control%20of%20three,of%20wiring%20for%20the%20 installer.>.
- Cengel, Yunus A. Heat Transfer A Practical Approach. Texas: Mcgraw-Hill , 2003. Book.
- Cengel, Yunus A., Michael A. Boles and Mehmet Kanoglu. *Thermodynamics An Engineering Approach*. New York: McGraww-Hill Education, 2019. Book.
- "Climate and Average Weather Year Round in New Brunswick." 25 May 2018. Weather Spark. Cedar Lake Ventures, Inc. Website. 28 01 2023. https://weatherspark.com/y/23779/Average-Weather-in-New-Brunswick-New-Jersey-United-States-Year-Round>.
- *Convective Heat Transfer*. 2003. Website. 18 02 2023. https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html>.
- Davis, Tim. *SINGLE-PHASE VS. THREE-PHASE POWER*. 14 February 2020. Web Site. 02 March 2023. https://insights.tanktemp.com/blog/single-phase-vs.-three-phase-power#:~:text=Power%20Efficient,tonnage%20while%20pulling%20less%20amperage.>.
- Energy, Saint John. *Saint John Energy Rates*. 2023. Web site. 28 March 2023. https://www.sjenergy.com/pages/saint-john-energy-rates.
- Geise, Sarah. *Kloeckner Metals*. 09 August 2021. web page. 01 03 2023. https://www.kloecknermetals.com/blog/304-stainless-steel-vs-316/#:~:text=Price%20Difference%20of%20304%20Stainless%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304-stainless-steel-vs-316/#:~:text=Price%20Difference%20of%20304%20Stainless%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304-stainless-steel-vs-316/#:~:text=Price%20Difference%20of%20304%20Stainless%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304-stainless-Steel-vs-316/#:~:text=Price%20Difference%20of%20304%20Stainless%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304-stainless%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304%20Stainless%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304%20Steel%20vs%20316&">https://www.kloecknermetals.com/blog/304%20Steel%200f%20304%20SS.
- Goslin, Zach. Air Cooled Barrel Inquiry. 607 N. Central Ave. Wood Dale, IL 60191, 01 March 2023. E-mail.
- *Heat and Sensor Technology*. n.d. 29 01 2023. < https://heatandsensortech.com/products/ceramic-heaters/>.
- Incropera, Frank P., et al. *Fundamental of Heat and Mass Transfer*. Hoboken, Nj: John Wiley, 2007. Book.
- McGwire, Tad. *Process Heating*. 1 November 2016. Web site. 27 January 2023. https://www.process-heating.com/articles/91919-water-vs-air-cooling-during-plastics-manufacturing.

- Mott, Rober L. and Joseph A. Untener. *Applied Strength of Materials Seventh edition*. New York: CRC Press, 2022. Soft Cover book.
- Newton, O.A. *https://www.oanewton.com/post/rule-of-thumb-optimal-blower-design*. 22 January 2021. Website. 29 January 2023.
- Pelonis, Sam. Axial Vs. Centrifugal Fans. 4 November 2015. 03 March 2023. ">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal-fans#:~:text=Centrifugal%20fans%20also%20offer%20distinct,for%20sustaining%20larger%20air%20systems.>">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal-fans#:~:text=Centrifugal%20fans%20also%20offer%20distinct,for%20sustaining%20larger%20air%20systems.>">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal%20fans%20also%20offer%20distinct,for%20sustaining%20larger%20air%20systems.>">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal%20sustaining%20larger%20air%20systems.>">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal%20systems.>">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal%20systems.>">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal%20systems.">https://www.pelonistechnologies.com/blog/axial-vs.-centrifugal%20systems.
- U.S. Department of Energy. January 2001. Pump Life Cycle Costs: A Guide To LCC Analysis For Pumping Systems. 29 March 2023. .
- Vlachopoulos, John and David Strutt. "Basic Heat Transfer and Some Applications in Polymer Processing." 2002. *http://www.polydynamics.com/fra_library.htm*. Pdf. 28 01 2023. <http://www.polydynamics.com/fra_library.htm>.
- "What is an industrial fan's life span?" 2023. 29 March 2023. ">https://www.aireng.com.au/what-is-an-industrial-fans-life-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!>">https://www.aireng.com.au/what-is-an-industrial-fans-life-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!>">https://www.aireng.com.au/what-is-an-industrial-fans-life-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20fan%2C%20with,for%20up%20to%20fifty%20years!">https://www.aireng.com.au/what-span/#:~:text=A%20good%20quality%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!">https://www.aireng.com.au/what-span%20years!"/>"//www.aireng.com.au/what-span%20years!"/>"//www.au/what-span%20years!"/>>>>>>>>>>>>>>>>>>>>>>>

APPENDIX A: STR APPROVAL FORM

Source: Original

Project Approval Form

Student Information

Name: Bryan G. Mendoza Program & Date: Mechanical Engineering Technology, September 24, 2022 Email & Phone: <u>bgmendoza.nb@gmail.com</u> & (506) 566-4858 Update to Proposal: No <u>Advisor & Sponsor Information</u> Department Advisor & Assigned Difficulty Level: Jay Fletcher & 3.5 Project Sponsor & Liaison: Ron Loughery & Maintenance Project Site: Inteplast Bags & Films Corp., 291 Industrial Drive, Saint John N.B. E2L 4C3 Project Email & Phone: <u>rloughery@bssj.inteplast.com</u> & (506) 633-8101

Project Description

Describe the current problem that needs to be addressed (who/what/where/when/why)

 Inteplast Bags and Films Corporation is a plastic manufacturing company in Saint John New Brunswick that uses a blown film extrusion process at the beginning of its production. Extruder barrels need to heat & cool to maintain the desired operating temperature. Currently, extruder number 3 uses a water-cooled system using a pump and a reservoir that runs continuously even if the unit does not need cooling. The barrel temperature is currently automatically controlled by temperature controllers. This particular extruder has 5 separate "Zones" which allow a different heat profile to be adjusted along the length of the barrel. These controllers have separate outputs which turn on either heat or cool output to maintain desired temperature setpoint. The heat output energizes a contactor which turns on a resistive heating element when the actual temperature is below the desired temperature. The cool output energizes a solenoid valve which permits the cooling water to flow through the existing barrel heat/cool unit when the actual temperature exceeds the desired temperature. The amount of cooling water allowed to flow through the heat/cool unit is manually adjusted with a needle valve by the operators. This is to prevent the thermal shock of the controlled zone. The pump also uses distilled water as a cooling medium and passes through a heat exchanger and uses glycol on the colder side. The glycol is supplied from a temperature-controlled factory process system. Furthermore, the breakdown of either pump or the motor will cause the whole unit to shut down.

- 2. State the Objective of your project (what/why)
- The objective of this project is to study the heat and mass transfer of the extruder 3 and convert the existing water-cooled barrel of the extruder into an air-cooled type using a series of blowers and use automation controls for the blowers to turn on or off depending on the desired temperature. This is to eliminate unscheduled shutdown due to pump or motor malfunction. Also, to increase the energy efficiency of the barrel cooling. The cooling pump runs continuously, and the distilled water is an ongoing expense due to evaporation and leakage.

Project Deliverables

List the concrete elements that you will produce to achieve the Objective of the Project (e.g., CAD drawings, load calculations, specifications, ROI, test data for systems, flow diagrams, recommendations....)

- Any drawing required including
 - o 2D and 3D CAD for the existing setup
 - o 2D and 3D CAD drawings/models for the proposed modification & assembly
 - Electrical diagram and instrumentation controls diagram, P&ID
- Tables and charts and diagrams that are needed especially for temperature profiling.
- Computation of the project design cost
- All heat and mass load calculations, equipment rating, flow rates, material specifications and the like.
- Cost Benefit Analysis and future cost-effectiveness of the project
- ROI Analysis
- Mounting Calculations

Signature & Dates

Student:		Date:	October 03,2022
Sponsor:	lon Longuy	Date:	OCT 12/22

STR Coordinator: Rob Linden

Date: 10/25/2022

APPENDIX B: STR FORMAL PROPOSAL

Source: Original

TO:	Jay Fletcher
COPIES:	Rob Linden
FROM:	Bryan Mendoza - MET
DATE:	27 November 2022

SUBJECT: FORMAL PROPOSAL for NBCC-SJ Senior Technical Project and Report —MET Project Title: Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System at Inteplast Bags & Films Corp.

ATTACHMENTS: Appendix A – List of Project Deliverables Appendix B – Weekly Work Plan Schedule Appendix C – Available Project Resources

BACKGROUND TO PROJECT

Plastic extrusion is a process in a manufacturing plant wherein plastic materials are fed from a silo into the barrel of an extruder. The plastic material is gradually melted using external heat and the friction between the screw and the barrel itself and is divided into different zones. These zones need to maintain a specific temperature to run smoothly.

Inteplast Bags and Films Corporation is a plastic manufacturing company in Saint John, New Brunswick, that uses a blown film extrusion process at the beginning of its production. Extruder barrels need to heat & cool to maintain the desired operating temperature.

Currently, extruder number 3 uses a water-cooled system using a single pump and a reservoir that runs continuously even if the unit does not need cooling. Though the system uses distilled water for the cooling system, clogging and scaling along the line causes the cooling to be inefficient. Furthermore, glycol is supplied from the temperature-controlled factory process system as a heat exchange medium for the water, which adds to the unit's operating cost. All this causes a significant setback in the operation of the plant, including maintenance of the pump and motor, which results in a consequent loss in the production opportunities of the plant.

As a mechanical engineering technology student at NBCC, I have acquired knowledge through my instructors to develop the skills necessary for this project. This project is suitable for applying engineering subjects such as heat transfer, fluids and machinery, cooling using force draft blowers, design, blueprint reading, AutoCAD and SolidWorks, and communication skills. To solve the stated problem and come up with a suitable solution within specifications and costs, I will need to apply all necessary knowledge with the support of my instructors, my advisor, and my project sponsor.

PROJECT DESCRIPTION / SCOPE

This project aims to convert the existing water-cooled barrel for extruder 3 to an air-cooled system at Inteplast Bags & Film Corp. and improve the following:

- Improve overall plant efficiency by eliminating equipment running (in this case, pump and motor) even not in use
- Reduce operating costs by eliminating the use of glycol as a heat exchange medium.
- Maximize the use of energy through the use of an improved airflow diffuser along the barrel.

This project includes heat calculations of the existing setup and the design of an air-cooled system that will replace the current setup with better efficiency. The success will be evaluated by the efficiency and cost of the project.

a) Project Deliverables

A list of project deliverables is included in Appendix A: "List of Project Deliverables." To be able to achieve the desired outcome of the project, I will need to:

- Study the overall plant setup and operation.
- Included CAD models for proposed modification and assembly
- Calculating heat dissipated by the extruding barrel and the heat transfer from the barrel to the water-cooling system.
- Using the calculated heat flow rate, compute the required airflow needed to dissipate the same amount of heat.
- o Sizing of blowers/blowers for each zone on the barrel
- Mounting calculations and design recommendations on how to install the blowers/blowers
- o Integrate existing Process Logic Control into the newly installed equipment.
- Design costs and cost-benefit analysis

b) Schedule

This project requires frequent plant visits to gather information necessary for preliminary design concepts. Company-owned devices such as thermal cameras, measuring tools, and mechanical means will be needed to access hidden parts required for this project. Thorough Research is also essential on the subject matter to fully understand the concept and apply it in this project. Attached is Appendix B: "Weekly Action Plan Schedule," which gives an overview of the timeline needed to complete the project.

Significant milestones for this project include:

- Having a clear and concise calculation of heat transfer for the existing setup, which provides for data collection, actual measurements, and applying engineering formulas
- Sizing up equipment such as blowers and their auxiliaries
- o Design an airflow system that will maximize the transfer of heat
- Final recommendation and suggestions for suppliers in the market that suits the best quality yet at an economical price

FEASIBILITY

a) Personal Credentials:

With my experience working in the oil and gas industry for the past years, I've gained skills such as critical thinking and attention to detail that I needed to complete this project. I am immersed in different kinds of mechanical equipment, such as stationary and static, and relate those experiences to the actual design. Furthermore, with my current job as a restaurant server, I have gained soft communication skills, which are very important for the field I am in right now. Lastly, New Brunswick Community College has taught me all the technical knowledge needed to be competent and fit to finish this project.

b) Resources:

I will utilize a variety of resources to guarantee the timely and effective execution of this project. Appendix C: "Available Project Resource" summarizes tools needed to finish this project promptly. In addition to the resources already mentioned, my advisor, Jay Fletcher, will help me understand the concepts and put them into practice through his expertise on the subject.

REQUEST FOR AUTHORIZATION

With all the documents presented and all the plans set in place, I hope this will be satisfactory to convince you that I am fit for this project. With this, please accept my proposal and give me the authorization to begin my project at Inteplast Bags & Films Corp.

The experience and knowledge I will gain in this project will significantly help the company and improve the skills I can use to find an employer.

Regards,

Bryan Mendoza MET-2 Student

Appendix A: List of Project DeliverablesDate: 27 November 2022Name, Program: Bryan Mendoza-METProject Title: Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System atInteplast Bags & Films Corp.Sponsor: Ron Loughery-Maintenance at Inteplast Bags & Films Corp., Saint John

Project Deliverables

The following project deliverables will be included in the final submission of the report.

- Any drawing required, including
 - · 2D and 3D CAD for the existing setup
 - 2D and 3D CAD drawings/models for the proposed modification & assembly
 - Electrical diagram and instrumentation controls diagram, P&ID
- Tables and charts, and diagrams that are needed, especially for temperature profiling.
- o Complete bill of materials on the latest equipment prices available
- Computation of the project design cost
- All heat and mass load calculations, equipment ratings, flow rates, material specifications and the like.
- Cost Benefit Analysis and future cost-effectiveness of the project
- o ROI Analysis
- Mounting Calculations

Appendix B: Weekly Work Plan ScheduleDate: 27 November 2022Name, Program: Bryan Mendoza-METDate: 27 November 2022Project Title: Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System atInteplast Bags & Films Corp.Sponsor: Ron Loughery-Maintenance at Inteplast Bags & Films Corp., Saint John

Weekly Work Plan Schedule

All STR Project ***DELIVERABLES*** are mentioned at appropriate times in the following Work Plan.

Previous Work Completed

- o Plant Visit and overall operation
- Meeting with Ron Loughery concerning the project
- Establish a structured daily Logbook

November 7-13

- o Start the Project Proposal and Weekly Workplan
- November 10th Meet with Project Sponsor on-site—take notes on proposed work-plan schedule/restrictions...
- Review plant rules and production
- Establish CAD requirements
- Gather background information on the topic/company
- Begin review of background data on the problem
- Consult with my Technical Advisor regarding the proposed work plan

November 14-20

- Complete review of background information
- Gather field data for the project, including temperature profiling on each zone of the barrel
- Calculation of heat dissipated by the extruding barrel and the heat transfer from the barrel to the water-cooling system

November 21-27

- The initial design of air flow ducting wrapped around the barrel to maximize heat dissipation from the barrel to the atmosphere
- Computation for the volumetric flow rate required to size up the blowers needed
- November 27th -Submit formal STR Proposal and Weekly Workplan with all required Appendices to the Assignment Dropbox COMM & ETTG *DELIVERABLE*
- o Communicate with the project sponsor for additional data needed for the computation

November 28-December 4

- o Meet with Project Sponsor to approve the project schematic and review the data
- o Begin literature review
- Discuss project solutions with Technical Advisor
- Begin to compile a list of options and recommendations

December 5-11

- Finalize existing project schematic on CAD
- Prepare a draft list of recommendations/options for discussion with the Project Sponsor
 DELIVERABLE
- Meet with Ron Loughery for any suggestions about the progress of the project
- o Review SolidWorks and begin to model the design
- \circ $\;$ Review AutoCAD and begin to model the existing setup $\;$
- Update the logbook from time to time

December 12-18

• Start doing all CAD drawings for the existing setup and proposed modification and assembly

December 19-January 1

- o Christmas Break
- Continue doing CAD drawings for the existing setup and proposed modification and assembly

January 2-8

- Finalizing CAD drawings and having Graham Moore take a look at the files *DELIVERABLE*
- \circ $\;$ Research electrical diagrams and instrumentation, and controls needed for the project $\;$
- o Research on mounting calculations for the modified design to the existing setup
- Start Researching vendors for suitable equipment needed and suppliers for possible fabrication of design.

<u>January 9-15</u>

- Design for the Electrical Diagram and instrumentation control diagram
- Design the mounting of the proposed modification to the existing setup
- Finalizing the equipment and the inventory of all materials needed for the project, ie. Bolts, fasteners, clamps, wires etc.
- Update the logbook from time to time

January 16-22

- Finalizing Design for Electrical Diagram and instrumentation control diagram *DELIVERABLE*
- Finalizing the mounting design of the components. ***DELIVERABLE***
- January 22nd- Submission of Progress Report to the Assignment Dropbox by 11:59 pm; email advisor to request a meeting via teams and include Rob Linden in the correspondence to review progress *DELIVERABLE*

January 23-29

- o Research topics on cost-benefit analysis and rate of investment using collected data
- Research on the computation of project design costs

January 30-February 5

- o Start computation for the cost-benefit analysis and rate of investment using the collected data
- Putting up together all reports and starting drafting for the STR by the standards

February 6-12

- Finalizing computation for cost-benefit analysis and investment rate using the collected data and the project design costs. *DELIVERABLE*
- Going back to all sessions that are helpful for the STR, such as video recordings of Rob Linden and Sarah Wilson

February 13-19

- Finalizing the report and having someone take a look at it. (possibly other instructors and/or my advisor if there is any point missing, additional data to be added etc.)
- o Meet with Rob Linden for the formatting of the STR

February 20-26

- Final checking of the report before submission.
- February 26th- Submit the initial Submission to the Assignment Dropbox by 11:59 pm
 DELIVERABLE

February 27-March 5

- Meet with Ron Loughery for any additional input on the initial submitted STR
- o Meet with Jay Fletcher for any revisions on the project

<u>March 6-12</u>

- o Finalize report
- Completion of the front matter of the report

March 13-19

- o Start working on the PowerPoint slide presentation
- Start proofreading the report

March 20-26

- Continue working on the slides and start preparation for the STR presentation
- Finalize report and start printing final STR (if there is no revision)

March 27-April 2

- Finalize PowerPoint slides and prepare some answers to possible questions that might be asked
- Final touch-up on the report and have it ready on original hard copy, digital e-copy, flash drive

APRIL 3-10

- April 10th Submit copies of the Senior Technical Report as outlined in class *DELIVERABLE*
- Practice STR presentation
- Invite Sponsor to attend Presentation (date/time/NBCC E2001)

APRIL 11-14

- Prepare and practice STR Presentation
- Presentation are 12,13, 14th in the PEF (E-2001)

Appendix C: Available Project ResourcesDate: 27 November 2022Name, Program: Bryan Mendoza-METProject Title: Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled atInteplast Bags & Films Corp.Sponsor: Ron Loughery-Maintenance at Inteplast Bags & Films Corp., Saint John

List of People Contacted or to be Contacted:

- Jay Fletcher
- o Joshua Murray
- o Dana Betts
- o Shannon Milutin
- o Graham Moore
- o Rob Linden
- Ron Loughery

Topics to be Researched:

- o Heat transfer
- o Fluid Mechanics
- Plastic Manufacturing/Plastic Extrusion
- Process Heating: Water vs. air cooling in plastic manufacturing.

Resources (equipment) used in your Research:

- o AutoCAD
- o Solid works
- Thermal Camera
- Measuring tools, ie. Vernier calliper, tape measure
- Microsoft office
- o Calculator

Sources (websites & books) used in your Research:

- o https://www.iqsdirectory.com/articles/plastic-extrusion.html
- <u>https://www.process-heating.com/articles/91919-water-vs-air-cooling-during-plastics-manufacturing</u>
- o <u>https://www.youtube.com/c/PaulsonTraining</u>
- o https://www.engineeringtoolbox.com/convective-heat-transfer-d 430.html
- o https://nbcc.libguides.com/mechaniclengineeringtechnology

APPENDIX C: PROGRESS REPORT

Source: Original

TO:	Jay Fletcher
COPIES:	Rob Linden
FROM:	Bryan Mendoza
DATE:	22 January 2023
ATTACHMENT:	Appendix A: Weekly Work Plan (Deliverables and Target Dates)
SUBJECT:	NBCC-SJ MET2 Senior Technical Report - Progress Report
	Project Title: Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled
	System at Inteplast Bags & Films Corp.
	Period Covered: 27 November 2022 – 22 January 2023

PROJECT OBJECTIVE/OVERVIEW

Inteplast Bags and Films Corporation is a plastic manufacturing company in Saint John, New Brunswick, that uses a blown film extrusion process at the beginning of its production. Extruder barrels need to heat & cool to maintain the desired operating temperature.

Currently, extruder number 3 uses a water-cooled system using a single pump and a reservoir that runs continuously even if the unit does not need cooling. Though the system uses distilled water for the cooling system, clogging and scaling along the line causes the cooling to be inefficient. Furthermore, glycol is supplied from the temperature-controlled factory process system as a heat exchange medium for the water, which adds to the unit's operating cost. All this causes a significant setback in the operation of the plant, including maintenance of the pump and motor, which results in a consequent loss in the production opportunities of the plant.

The project's main objective is to convert water-cooled barrels into air-cooled ones and design a system that works better than the current setup.

I selected this subject because it covers a vast mechanical engineering knowledge such as design, heat and mass calculations.

I will apply the knowledge I learned in the program to this project. Deep research on the topic is essential in successfully designing an air-cooled system. I can also reach out to some technical people who are knowledgeable about this topic in academic and industrial setups.

With the preliminary measurement I did together with some research and keeping in touch with my project sponsor Ron Loughery and my project advisor Jay Fletcher, I did with the first stage of the design, which is the calculations and worked on the second stage, which is the design and drawing of the proposed project.

WORK COMPLETED

Since I have very little knowledge of the topic, I did preliminary research online on how the plastic industry works. Luckily, my project sponsor gave me a detailed tour of their plant and discussed each process. I also contacted some of the sectors for similar applications. I had a few exchange emails with Tempco, a US-based company that provides a wide variety of products in heating and cooling products. I also talked to Walter Smith of Xaloy, which supplies barrels for Inteplast Bags and Films Corporation, to get some information about the barrel. I also made some inquiries with Durex industries for similar products.

The sizing of blowers for each zone was calculated using some of the insights that are acceptable in the industry given by Zach Goslin of Tempco, as well as some efficiencies on their products. I also used the book Heat Transfer: A Practical Approach by Yunus Cengel for my other heat transfer calculations.

For the progress of the project, I have completed the following calculations:

- ✓ Sizing of Blowers
- ✓ Convective heat transfer of Air
- ✓ Sizing of Fins
- ✓ Radial Conduction of heat
- ✓ Sizing of heater bands

Background Material Collected:

- a) Original mechanical drawings, such as barrel dimensions and existing setup configurations, were given to me by my project sponsor Mr. Ron Loughery.
- b) Check out books from the NBCC library as well as online books and came across the following, which are of a big help in doing my calculations:
 - Heat Transfer: A Practical Approach by Yunus A. Cengel
 - Fundamentals of Heat and Mass Transfer by Frank P. Incropera et. al.
- c) Other websites that are also I also found very interesting are as follows:
 - https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node128.html
 - https://designerdata.nl/materials/plastics/thermo-plastics/low-density-polyethylene
 - https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html

Original Drawings:

Drawings that are needed for this project using a combination of AutoCAD and Solidworks, which were taught in college. The list below is the drawings needed for the project.

- 4 2D and 3D drawing of the current setup-80% complete
- Drawing for the fin design-100% complete
- Drawing for the heater band design-100% complete
- Drawing for the shroud design-in progress
- Drawing for the fan specification design- in progress
- 4 2D and 3D drawings of the proposed design-in progress
- Electrical block diagram- not yet started
- Instrumentation block diagram- not yet started

Data Collected:

Data collected were a combination of measured data and data provided by the project sponsor from the equipment manufacturers handbook and based on the years of experience operating the equipment. Some of the data that were given to me by my project sponsor are as follows:

- 1. Maximum operating temperature without cooling- 570°F
- 2. Mass flow rate of the melted plastic in lb/hr. 850 lb/hr
- 3. Setpoint temperature (which I believe is 390F?) Typically, 370-410°F
- 4. Feed- HDPE/LLDPE leaning more towards LLDPE

I also got some data on fan and band heaters manufacturer, which gave me the following valuable data:

- 1. Typical Static Pressure Range for Shrouds- 0.45-0.55" of H₂O
- 2. Efficiency of Standard Blowers- 75-85%
- 3. Factor of Safety they use for the industry- 25%
- 4. Frictional air losses due to baffles and air restrictions- 10%

PROBLEMS ENCOUNTERED

I have had an opportunity to visit the plant regularly since I started this project and did some measurements, such as collecting data for the existing setup. I also made some comparisons to their units that are factory built air-cooled and got some ideas.

With the current development of the project, there are many issues that arise which, in fact, necessary for the project. Many design considerations should be based on assumptions and must be proven in mathematical solutions or known facts that need to be researched. Some of the required values are the following:

- Factor of Safety
- Rate of cooling and heating that will be used in material selection
- Mounting calculations

Some of these issues affect the timeline for project deliverables. I am still working on those issues by reading and asking questions that are experts in this field. This gives me better ideas on how to tackle problems correctly. Although I am a bit behind in my proposed schedules on project deliverables, I am confident that I can address all issues on time.

WORK TO BE COMPLETED

Having almost all the data needed for my computation, I can proceed with the following work items remaining to finish the project:

- ↓ Finalize calculation and selection of the blowers at the rated capacity needed for the project
- Finalize all the drawings
- ✤ Get quotations on how much the project will eventually cost
- Finalize design for electrical and instrumentation block diagrams
- Finalize mounting calculations

See attached Appendix A for a detailed Weekly Work Plan with Target Dates.

CONCLUSION

I have gone through much development since I started this project, from the planning stage to brainstorming and researching. Though unforeseen events slightly delay my schedule for the project, I am confident that I can finish it on time and will complete all my deliverables as planned. With the help and guidance of my project sponsor and my technical advisor, I am now on the right track to completing this project.

Appendix A: Weekly Work PlanDate: 22 January 2022Name, Program: Bryan Mendoza, METProject Title: Converting Extruder No. 3 Barrel from Water-Cooled to Air-Cooled System at InteplastBags & Films Corp.Sponsor: Ron Loughery-Maintenance at Inteplast Bags & Films Corp., Saint John

All STR Project ***DELIVERABLES*** are mentioned at appropriate times in the following Work Plan. All completed project items are indicated in orange, checkmark on the side, and green fonts are work in progress.

Previous Work Completed

- o Plant Visit and overall operation
- Meeting with Ron Loughery concerning the project
- Establish a structured daily Logbook

November 7-13

- ✓ Start the Project Proposal and Weekly Workplan
- November 10th Meet with Project Sponsor on-site—take notes on proposed work-plan schedule/restrictions...
- ✓ Review plant rules and production
- ✓ Establish CAD requirements
- ✓ Gather background information on the topic/company
- ✓ Begin review of background data on the problem
- ✓ Consult with my Technical Advisor regarding the proposed work plan

November 14-20

- ✓ Complete review of background information
- ✓ Gather field data for the project, including temperature profiling on each zone of the barrel
- Calculation of heat dissipated by the extruding barrel and the heat transfer from the barrel to the watercooling system. (Ruled out of the work item)

November 21-27

- ✓ The initial design of air flow ducting wrapped around the barrel to maximize heat dissipation from the barrel to the atmosphere
- ✓ Computation for the volumetric flow rate required to size up the blowers needed
- November 27th -Submit formal STR Proposal and Weekly Workplan with all required Appendices to the Assignment Dropbox COMM & ETTG *DELIVERABLE*
- ✓ Communicate with the project sponsor for additional data needed for the computation

November 28-December 4

- \checkmark Meet with Project Sponsor to approve the project schematic and review the data
- ✓ Begin literature review
- ✓ Discuss project solutions with Technical Advisor
- ✓ Begin to compile a list of options and recommendations

December 5-11

- ✓ Finalize existing project schematic on CAD
- Prepare a draft list of recommendations/options for discussion with the Project Sponsor
 DELIVERABLE
- \checkmark Meet with Ron Loughery for any suggestions about the progress of the project
- ✓ Review SolidWorks and begin to model the design
- \checkmark Review AutoCAD and begin to model the existing setup
- ✓ Update the logbook from time to time

December 12-18

✓ Start doing all CAD drawings for the existing setup and proposed modification and assembly

December 19-January 1

- ✓ Christmas Break
- ✓ Continue doing CAD drawings for the existing setup and proposed modification and assembly

January 2-8

- Finalizing CAD drawings and having Graham Moore take a look at the files *DELIVERABLE*
 - \checkmark Research electrical diagrams and instrumentation, and controls needed for the project
 - ✓ Research on mounting calculations for the modified design to the existing setup
 - ✓ Start Researching vendors for suitable equipment needed and suppliers for possible fabrication of design.

January 9-15

- o Design for the Electrical Diagram and instrumentation control diagram
- Design the mounting of the proposed modification to the existing setup
- Finalizing the equipment and the inventory of all materials needed for the project, ie. Bolts, fasteners, clamps, wires etc.
 - ✓ Update the logbook from time to time

January 16-22

- Finalizing Design for Electrical Diagram and instrumentation control diagram *DELIVERABLE*
- Finalizing the mounting design of the components. *DELIVERABLE*
- January 22nd- Submission of Progress Report to the Assignment Dropbox by 11:59 pm; email advisor to request a meeting via teams and include Rob Linden in the correspondence to review progress
 DELIVERABLE

January 23-29

- o Research topics on cost-benefit analysis and rate of investment using collected data
- Research on the computation of project design costs

January 30-February 5

- o Start computation for the cost-benefit analysis and rate of investment using the collected data
- Putting up together all reports and starting drafting for the STR by the standards

February 6-12

- Finalizing computation for cost-benefit analysis and investment rate using the collected data and the project design costs. *DELIVERABLE*
- Going back to all sessions that are helpful for the STR, such as video recordings of Rob Linden and Sarah Wilson

February 13-19

- Finalizing the report and having someone take a look at it. (possibly other instructors and my advisor if there is any point missing, additional data to be added etc.)
- Meet with Rob Linden for the formatting of the STR

February 20-26

- Final checking of the report before submission.
- o February 26th- Submit the initial Submission to the Assignment Dropbox by 11:59 pm *DELIVERABLE*

February 27-March 5

- Meet with Ron Loughery for any additional input on the initial submitted STR
- o Meet with Jay Fletcher for any revisions on the project

<u>March 6-12</u>

- o Finalize report
- o Completion of the front matter of the report

March 13-19

- Start working on the PowerPoint slide presentation
- o Start proofreading the report

March 20-26

- \circ $\;$ Continue working on the slides and start preparation for the STR presentation
- Finalize report and start printing final STR (if there is no revision)

March 27-April 2

- Finalize PowerPoint slides and prepare some answers to possible questions that might be asked
- Final touch-up on the report and have it ready on original hard copy, digital e-copy, flash drive

APRIL 3-10

- April 10th Submit copies of the Senior Technical Report as outlined in class *DELIVERABLE*
- Practice STR presentation
- Invite Sponsor to attend Presentation (date/time/NBCC E2001)

APRIL 11-14

- Prepare and practice STR Presentation
- Presentation are 12,13, 14th in the PEF (E-2001)

APPENDIX D: DETAILED DRAWING OF THE BARREL

Source: Ron Loughery of Inteplast Bags and Plastics Corp

APPENDIX E: TEMPERATURE PROFILE

Source: Original

APPENDIX E: PROPERTIES OF AIR

Source: Cengel, Yunus A. Heat Transfer A Practical Approach. Texas: Mcgraw-Hill, 2003. Book.

https://www.engineeringtoolbox.com

ADDENDIV 1
APPENUIA

_	_	_	

Properties of air at 1 atm pressure

-		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Number
T, °C	p, kg/m ^a	Cp, J/kg·K	k, W/m-K	a, m²/s	μ, kg/m-s	v. m²/s	Pf
-150	2.866	983	0.01171	4.158 × 10-6	8.636 × 10-6	3.013 × 10-6	0.7246
-100	2.038	966	0.01582	8.036 × 10 ⁻⁶	1.189×10^{-5}	5.837 × 10 ⁻⁶	0.7263
-50	1.582	999	0.01979	1.252×10^{-5}	1.474×10^{-5}	9.319 × 10 ⁻⁶	0.7440
-40	1.514	1002	0.02057	1.356×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.743
-30	1.451	1004	0.02134	1.465 × 10-5	1.579 × 10-5	1.087 × 10-5	0.742
-20	1.394	1005	0.02211	1.578 × 10-5	1.630×10^{-5}	1.169×10^{-5}	0.740
-10	1.341	1006	0.02288	1.696×10^{-5}	1.680×10^{-5}	1.252×10^{-5}	0.738
0	1.292	1006	0.02364	1.818×10^{-5}	1.729×10^{-5}	1.338×10^{-5}	0.7362
5	1.269	1006	0.02401	1.880×10^{-5}	1.754×10^{-5}	1.382×10^{-5}	0.7350
10	1.246	1006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.426×10^{-5}	0.733
15	1.225	1007	0.02476	2.009 × 10-5	1.802×10^{-5}	1.470 × 10-5	0.7323
20	1.204	1007	0.02514	2.074×10^{-5}	1.825×10^{-5}	1.516×10^{-5}	0.730
25	1.184	1007	0.02551	2.141×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.729
30	1.164	1007	0.02588	2.208×10^{-5}	1.872×10^{-5}	1.608×10^{-5}	0.728
35	1.145	1007	0.02625	2.277 × 10 ⁻⁵	1.895×10^{-5}	1.655×10^{-5}	0.7268
40	1.127	1007	0.02662	2.346 × 10-5	1.918 × 10-5	1.702×10^{-5}	0.725
45	1.109	1007	0.02699	2.416 × 10-5	1.941×10^{-5}	1.750×10^{-5}	0.724
50	1.092	1007	0.02735	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.7228
60	1.059	1007	0.02808	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7202
70	1.028	1007	0.02881	2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	0.717
80	0.9994	1008	0.02953	2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.715
90	0.9718	1008	0.03024	3.086 × 10-5	2.139 × 10-5	2.201 × 10-5	0.713
100	0.9458	1009	0.03095	3.243 × 10 ⁻⁵	2.181×10^{-5}	2.306×10^{-5}	0.711
120	0.8977	1011	0.03235	3.565×10^{-5}	2.264×10^{-5}	2.522×10^{-5}	0.7073
140	0.8542	1013	0.03374	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.704
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420×10^{-5}	2.975×10^{-5}	0.701
180	0.7788	1019	0.03646	4.593×10^{-5}	2.504×10^{-5}	3.212 × 10-5	0.6992
200	0.7459	1023	0.03779	4.954×10^{-5}	2.577 × 10-5	3.455×10^{-5}	0.697
250	0.6746	1033	0.04104	5.890 × 10 ⁻⁵	2.760×10^{-5}	4.091×10^{-5}	0.694
300	0.6158	1044	0.04418	6.871 × 10 ⁻⁵	2.934×10^{-5}	4.765×10^{-5}	0.693
350	0.5664	1056	0.04721	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.693
400	0.5243	1069	0.05015	8.951 × 10 ⁻⁵	3.261 × 10-5	6.219 × 10-5	0.694
450	0.4880	1081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997 × 10-5	0.6965
500	0.4565	1093	0.05572	1.117×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.698
600	0.4042	1115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.703
700	0.3627	1135	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092
800	0.3289	1153	0.07037	1.855×10^{-4}	4.362×10^{-5}	1.326×10^{-4}	0.714
900	0.3008	1169	0.07465	2.122 × 10-4	4.600 × 10-5	1.529×10^{-4}	0.720
1000	0.2772	1184	0.07868	2.398 × 10-4	4.826×10^{-5}	1.741×10^{-4}	0.726
1500	0.1990	1234	0.09599	3.908 × 10 ⁻⁴	5.817×10^{-5}	2.922×10^{-4}	0.7478
2000	0.1553	1264	0.11113	5.664×10^{-4}	6.630×10^{-5}	4.270 × 10-4	0.7539

Note. For ideal gases, the properties c_p , k, μ , and \Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 1984; and Thermophysical Properties of Matter. Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

APPENDIX G: SIZING OF BLOWERS CALCULATION

Source: Original (Calculation) <u>http://www.polydynamics.com/fra_library.htm</u> (Plastic Properties)

STR BRIAN MENDO 77 Page 1/2 5059633 MET-2 CALCULATING THE AMOONT OF HEAT GENERATE BY THE PRCESS IN FORMS OF THE CONTROLLED SETPOINT V THE MAXIMUM TEMPERATURE WITHOUT COOLING. USING FORMULA Q= mCpAT WHERE M = Mass flow rate = 850/b hr To = MAXIMUM DEMPERATURE WITHOUT COULNE = SJOF TI = SET POINT TEMPERATURE = 370°F - 10°F (DEPENDING ON THE MATERIAL TO BE MSED) * FOR THIS CALGULANON, I NILL USE 370% FOR EXTREME ONDIPON CP = LPPE/ULPPE MATERIAL BENG ASTD = 2300 U/Kg-K 0.55 BM Q = m C p A f= 850 165 . 0 621 BM (550-370) Ar 16-04 (550-370) Q = 54, 150 BM

STR PAGE 2/2 BRYAN MENDOLA 5059633 1157-2 AMBIENT REMPERATURE INSIDE THE BUILDING (EXTREME) 80°F SPECIFIC VOLUME (PLYCHMOMETRIC CHAMT) Crair - 0.24 pm v = 13.6 ft 3/16 p= 0.07353 16/54 5 Xpair (At) 1: 7 Q = (mair WHONE At - remperature DIFFERENCE BETWEEN THE SET POINT & THE INDON TEMPERATURE 84,150 BM - - (0.0735 1b) (0.24 BTV) (370-80) 84, 150 BM 0-0115(020)(370-82) X Ihr 60min 279,84 (FM ACCOUNTING FOR i FACTOR OF SAFETY = 1.2 EFFICIENCY 80%. MR LOSSER : 10% BLOVEN SIZE CFM = 279.84 × 1.2 × 1.1 = 461.7 CFM

Table 3

Polymer	Solid Density* ρ (g/cm ³)	Glass Transition T _g	Melting Point T _m	Usual Melt Processing Range	Melt Density* ρ (kg/m ³)	Thermal Conductivity k (W/m °C) (Btu/h ft °F)	Heat Capacity Cp (J/kg °C) (Btu/lb _m °F)	Heat of Fusion ΔH (J/kg) (Btu/lb)
HDPE	0.941-0.967	-130°C -202°F	130-137°C 266-278°F	160-240°C 320-464°F	780	0.25 0.145	2200-2400 0.52-0.57	210,000-300,000 90-130
LDPE	0.915-0.935	-130°C -202°F	106-112°C 223-234°F	160-240°C 320-464°F	760	0.20 0.115	2200-2400 0.52-0.57	190,000-240,000 80-100
LLDPE	0.910-0.925	-130°C -202°F	125°C 257°F	160-240°C 320-464°F	760	0.20 0.115	2200-2400 0.52-0.57	190,000-240,000 80-100
PP	0.890-0.910	-20°C -4°F	165°C 329°F	180-240°C 356-464°F	730	0.18 0.10	2000-2200 0.48-0.52	210,000-260,000 90-110
PVC (Rigid)	1.30-1.58	80°C 176°F	175°C 347°F	165-205°C 329-401°F	1250	0.17 0.10	1000-1700 0.24-0.41	170,000-190,000 70-80
PS	1.04-1.10	100°C 212°F	amorphous**	180-240°C 356-464°F	1000	0.15 0.09	1300-2000 0.31-0.48	amorphous**
РММА	1.17-1.20	105°C 221°F	amorphous**	180-230°C 356-446°F	1050	0.19 0.11	1400-2400 0.33-0.57	amorphous**
PET	1.34-1.39	80°C 176°F	265°C 509°F	275-290°C 527-554°F	1160	0.18 0.10	1800-2000 0.43-0.48	120,000-140,000 50-60
ABS	1.01-1.04	105-115°C 221-239°F	amorphous**	200-290°C 392-554°F	990	0.25 0.145	1300-1700 0.31-0.41	amorphous**
Nylon-66	1.13-1.15	90°C 194°F	265°C 509°F	275-290°C 527-554°F	980	0.20 0.115	2400-2600 0.57 - 0.62	190,000-205,000 80-88
PC	1.2	140°C 284°F	amorphous**	250-305°C 482-581°F	1050	0.22 0.13	1300-2200 0.31-0.52	amorphous**

Selected Thermal Properties.

* Melt densities have been estimated for roughly the mid-temperature of the processing range. See Mark [9] for expressions in the form $\rho = A-BT \pm CT^2$.

APPENDIX H: BLOWER SPECIFICATIONS

Source: <u>https://www.motor-pump-ventilation.com/merchant/product/centrifugal-fan-mb-3000-rpm-three-phase</u>

Blower curve: Original

Done through Excel and plot digitizer

Related Products

CFM	in H ² O
218.903403	1.95194228
185.192228	2.03763571
199.635633	2.01982795
229.222878	1.92695118
238.166376	1.9055311
251.242614	1.85192402
264.314061	1.81979157
276.016747	1.75901803
289.093009	1.70541102
302.169265	1.65180394
313.867101	1.61250496
322.818633	1.5552937
331.766963	1.5123989
340.031678	1.45160433
348.294015	1.40154724
357.93074	1.35507756
366.195455	1.29428291
373.773394	1.2299052
382.037355	1.17268984
390.988858	1.11547862
397.191585	1.05109244
407.52395	0.96883594
413.729113	0.89371252
420.617056	0.84006783
428.887439	0.75421965
435.089377	0.6934126
442.668929	0.62187665
449.559291	0.55749469
456.451243	0.48595455
460.589651	0.42871409
467.487235	0.33212024
472.318034	0.25340934
477.144848	0.19259394
481.970003	0.13893674
485.420805	0.08169208

Туре	A	B	С	D	E	F	G	H	I	3	K	L	М	N	0	P	Q	R	s	T/V	U	Y	Z	Z1
								MВ	12 à	20 s	sans	supp	ort											
MB 12/5M2-T2	203	180	85	67	116	72	85	225	-	•	135	-	-	105	93	106	150		118	7	92,5	-	-	-
MB 12/5 M4-T4	203	180	85	67	116	72	85	220	14		135	-	-7	105	93	106	150		118	7	92,5		+	
MB 14/5 M2-T2	249	222	100	91	147	80	105	280	•	•	162	÷	÷	128	105	123	175		147	7	105	-		-
MB 16/6 M2-T2	293	254	118	107	171	100	120	340	-	10	180			147	128	153	214		172	7	127	•		-
MB 16/6 M4-T4	293	254	118	107	171	100	120	310	-		180	-	5	147	128	153	214		172	7-9	127	-	50	-
MB 18/7 M2-T2	347	302	128	133	203	115	140	355	123	62	214	5	20	169	146	169	237		192	9	141	-22	828	2
MB 20/6 M2-T2	347	300	128	146	203	105	100	335	10	4	230	4	2	128	134	159	255		153	9	161	2		4
MB 20/8 M4-T4	375	321	138	136	222	130	160	350		÷.	230		-2	189	160	184	255		213	9	161	•		
MB 20/8 M2-T2	375	321	138	136	222	130	160	380	•		230	÷	÷	189	160	184	255		213	9	161	-		-
								MВ	22 à	45 a	avec	supp	ort											
MB 22/9 T4 T2 1,1	452	386	181	134	280	140	216	381	50	110	256	220	290	256	180	204	280	100	282	9	180	-	•	11
MB 22/9 T2 2,2	452	386	181	134	280	140	216	429	50	110	256	220	290	256	180	204	280	100	282	9	180	-	æ	11
MB 25/10 T4	501	425	197	144	310	165	250	429	74	134	282	228	315	290	205	229	306	113	314	9	203	70		13
MB 25/10 T2	501	425	197	144	310	165	250	447	74	134	282	228	315	290	205	229	306	113	314	9	203	-		13
MB 28/11 T2	553	471	216	152	340	180	300	515	95	144	320	245	348	340	220	244	348	120	364	9	228	+		13
MB 28/11 T4	553	471	216	152	340	180	300	493	95	144	320	245	348	340	220	244	348	120	364	9	228	. •	•	13
MB 31/12 T4	644	528	246	182	406	198	319	538	240	290	355	457	482	360	240	274	382	171	395	11	257	538	-	13
MB 35/14 T4	718	584	267	243	451	224	280	564	240	290	394	449	524	318	266	300	422	184	356	11	289	564		13
MB 40/16 T4	795	649	300	273	499	250	320	595	240	290	438	560	590	370	300	336	464	192	406	11	325	595	200	13
MB 45/18 T4	885	728	326	305	553	280	360	625	250	300	489	602	632	404	328	356	515	207	436	11	365	625	200	13

Aspiration

Refoulement

APPENDIX I: HEATER BANDS CATALOG

Band Heaters

Standard Sizes and Ratings

Continued from previous page

Standard (Non-Stock) Ceramic Bands

		ID	W	/ldth		Watt	Density			Part N	umber		
	In	mm	In	mm	Wattage	W/In ^a	W/cm ²	Terminal	120V	240V	480V	240/480V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	152.4	1%	38.1	950	35	5.5	T2	BCH00010	BCH00062	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	152.4	2	50.8	1900	53	8.2	13		BCH00063 BCH00064	BCH00129 BCH00130	-	
	6	152.4	3	76.2	1400	26	41	13	_	BCHOO04	DCHOOL30	BCH00167	
	6	152.4	4	101.6	1300	18	2.8	T3	BCH00011	BCH00065		=	
	6	152.4	5	127.0	1600	18	2.8	C5E	_	-	-	BCH00168	
	6	152.4	51/2	139.7	2000	20	3.2	T3	-	-	-	BCH00169	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	152,4	0	152.4	2000	19	2.9	13	888	BC100066		BCH00170	
	6	152.4	6	152.4	4000	37	5.8	13		BCH00067	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6%	158.8	4	101.6	2430	33	5.1	T3		BCH00068	_		
	6%	158.8	6	152.4	4600	41	6.4	T3		-	BCH00131		
	61/1	165.1	1%	38.1	1000	34	5.3	T2		BCH00069	-	-	
	6%	165.1	2	50.8	1600	41	6.4	T3	PCHO0012	BCH00070	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6%	165.1	572	127.0	2500	26	4.0	13	BCH00012	BCH00071	_	_	
	6%	165.1	5%	139.7	4200	39	6.1	T3		-	BCH00132	-	
	6½	165.1	6	152,4	2000	17	2.7	CSE		-	-	BCH00171	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6½	165.1	6½	165.1	3700	29	4.5	T3		BCH00073	_	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6%	168.3	4%	114.3	3300	37	5.7	T3	PC400012	PCLOO(7.4	BCH00133	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6%	171.5	5	127.0	2500	25	3.8	CSE	BCHOOIS	BCH00075	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	177.8	2	50.8	1400	33	5.2	C2A	_	-	BCH00134		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	177.8	3	76.2	1650	26	4,1	T3		BCH00076	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	177.8	31/2	88.9	1300	18	2.7	T3	BCH00014	BCH00077	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	177.8	4	101.6	3500	42	6.5	T3	-	BCH00078	BCH00135		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	177.8	5%	152.4	2000	17	66	T3	_	BCH000/9	_	BCH00172	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7%	190.5	2	50.8	1900	42	6.5	T3		BCH00081		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7%	190.5	3	76.2	1800	27	4.1	T3		BCH00082	BCH00136	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7½	190.5	41/2	114.3	2000	20	3.1	T3	-	-	-	BCH00173	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7%	190.5	4%	114,3	2000	20	3.1	T3	BCH00015	BCH00083	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7%	190.5	5%	139.7	2500	20	31	13	BCH00016	DCH00004	_	BCH00174	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7%	190.5	7	177.8	6500	41	6.4	T3	-	_	-	BCH00175	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7½	190.5	9	228,6	5710	28	4.4	T3		-	BCH00137	- main	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	203.2	1%	38.1	770	21	3.3	T2	-	BCH00085	BCH00138		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	203.2	1%	38.1	2000	28	4,3	T2 T3	-	BC100086	BCH00139	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	203.2	2%	63.5	1000	17	2.6	T2	_	BCH00000	BCH00140		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	203.2	3	76.2	1900	26	4,1	T3			-	BCH00176	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	203.2	4	101.6	3000	31	4.8	T3	-	BCH00087	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	203.2	6	152.4	3500	24	3.7	T3	-	BCH00088	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	203.2	64	152.4	4500	31	4.8	T3 CSE			BCH00141	BCH00177	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8%	204.8	4	101.6	2100	22	3.3	T3		-	BCH00142	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	81/2	204.8	4	101.6	2800	29	4.5	T3			BCH00143	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	81/26	204.8	9	228.6	4900	22	3.5	T3			BCH00144		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8%	209.6	3	100.5	2300	31	4.8	COE		BCH00089	-	PCHO178	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	874	214.3	3	76.2	3000	30	61	T3	-	_	RCH00145	BCH00178	
8½ 214.3 3½ 88.9 3255 36 5.7 T3 BCH00147 8½ 214.3 4 101.6 3400 33 5.2 T3 BCH00191 BCH00147 8½ 214.3 5½ 139.7 3800 27 4.2 T3 BCH00191 BCH00148 8½ 215.9 1½ 38.1 1250 32 5.0 C2A BCH00092 8½ 215.9 4½ 114.3 3890 34 5.2 T3 BCH00092 8½ 222.3 9 228.6 4100 17 2.7 CSE BCH00193 9 228.6 1½ 38.1 1100 27 4.2 T2 BCH00150 9 228.6 2	8%	214.3	3%	88.9	2800	31	4.9	T3		BCH00090	BCH00146	-	
8½ 214.3 4 101.6 3400 33 5.2 T3 BCH00091 BCH00148 8½ 214.3 5½ 139.7 3800 27 4.2 T3 BCH00091 BCH00148 8½ 215.9 1½ 38.1 1250 32 5.0 C2A BCH00092 8½ 215.9 4½ 114.3 3890 34 5.2 T3 BCH00092 8½ 222.3 9 228.6 4100 17 2.7 CSE BCH00193 9 228.6 1½ 38.1 1100 27 4.2 T2 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 <td< td=""><td>81/26</td><td>214,3</td><th>31/2</th><td>88.9</td><td>3255</td><td>36</td><td>5.7</td><td>T3</td><td></td><td>-</td><td>BCH00147</td><td></td></td<>	81/26	214,3	31/2	88.9	3255	36	5.7	T3		-	BCH00147		
8½ 214.3 5½ 139.7 3800 27 4.2 T3 BCH00149 8½ 215.9 1½ 38.1 1250 32 5.0 C2A BCH00092 8½ 215.9 4½ 114.3 3890 34 5.2 T3 BCH00092 8½ 222.3 9 228.6 4100 17 2.7 CSE BCH00193 BCH00179 9 228.6 1½ 38.1 1100 27 4.2 T2 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 <td< td=""><td>81/16</td><td>214,3</td><th>4</th><td>101.6</td><td>3400</td><td>33</td><td>5.2</td><td>T3</td><td>-</td><td>BCH00091</td><td>BCH00148</td><td>-</td></td<>	81/16	214,3	4	101.6	3400	33	5.2	T3	-	BCH00091	BCH00148	-	
8% 213.9 1% 38.1 1200 32 5.0 C2A BCH00092 8½ 215.9 4½ 114.3 3890 34 5.2 T3 BCH00093 BCH00093 BCH00093 BCH00179 9 228.6 1½ 38.1 1100 27 4.2 T2 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150	8%	214,3	5%	139.7	3800	27	4.2	13		por poro	BCH00149		
8% 222.3 9 228.6 4100 17 2.7 CSE BCH0093 BCH00179 9 228.6 1½ 38.1 1100 27 4.2 T2 BCH00150 BCH00150 BCH00150 BCH00150 BCH00150	8%	215.9	44	38.1	3890	34	5.0	T3		BCH00092			
9 228.6 1½ 38.1 1100 27 4.2 T2 - BCH00150 - 9 228.6 2 50.8 2300 42 6.5 T3 - BCH00094	8%	222.3	9	228.6	4100	17	2.7	CSE		-	_	BCH00179	
9 228.6 2 50.8 2300 42 6.5 T3 - BCH00094	9	228.6	11/2	38.1	1100	27	4.2	T2	-		BCH00150	_	
	9	228.6	2	50.8	2300	42	6.5	T3		BCH00094			
9 228.6 25 65.5 2800 41 6.4 T3 - BCH00095	9	228.6	28	03.5	2800	41	0.4	13	-	BCH00095	-	PCHO2100	
9 228.6 5 127.0 2500 14 9.2 13 BCH00180	9	228.6	2	127.0	2500	18	28	13		_		BCH00180 BCH00181	
9 228.6 5% 139.7 3000 20 3.1 T3 - BCH00096 - BCH00182	9	228.6	5%	139.7	3000	20	3.1	T3		BCH00096		BCH00182	
9 228.6 8% 215.9 3900 17 2.6 CSE BCH00183	9	228.6	8%	215.9	3900	17	2.6	CSE	-	-	-	BCH00183	

View Product Inventory @ www.tempco.com

Band Heaters

Ceramic Band

Standard (Non-Stock) Ceramic Bands

Continued from previous page ...

1	1	ID	W	Vidth		Watt	Density			Part N	umber	
1	In	mm	In	mm	Wattage	W/m²	W/cm ^a	Terminal	120V	240V	480V	240/480V
ľ	91/14	239.7	3	76.2	2500	29	4.5	T3	_	BCH00097	BCH00151	
	9%	241.3	11/2	38.1	1200	28	43	T2	-	-	BCH00152	-
	9%	241.3	3	76.2	2200	25	3.9	T3	-	-	-	BCH00184
	9%	247.7	10	254.0	5200	18	2.7	C5E	-	-	-	BCH00185
Ī	10	254.0	1%	38.1	600	13	2.0	T2	_	BCH00098		-
	10	254.0	2	50,8	1800	30	4.6	C2A	-	BCH00099	-	-
	10	254.0	3	76.2	2400	26	4.1	T3	-	-	1.000	BCH00186
L	10	254.0	4	101.6	1500	12	1.9	C2A		BCH00100		-
Í	10	254.0	5	127.0	2800	18	2.9	C5E	_	-		BCH00187
	10	254.0	51/1	139.7	2500	15	2.3	T3		BCH00101		-
	10	254.0	6	152.4	3000	16	2.5	C2A	-	BCH00102	-	-
l	10½	266.7	45	114.3	5000	35	5.4	C2A	-	BCH00103	-	-
	11	279.4	3	76.2	2600	26	4.0	T3	-	-	-	BCH00188
	11	279 A	5	127.0	4000	24	3.7	T3	-	-	-	BCH00189
	119/16	281.0	4	101.6	4000	30	4.6	T3	-	-	BCH00153	-
Ļ	12	304,8	2	50.8	2000	27	4.2	C2A	-	BCH00104	-	
	12	304.8	3	76.2	2000	18	2.8	C2A	-	-	-	BCH00190
	12	304.8	6	152.4	4000	18	2.8	T3				BCH00191
	12	304.8	12	304.8	2000	5	0.7	13	-	BCH00105		-
ł	12%	3175	4	101.6	1950	13	2.0	C2A	-	BCH00106		
	12%	31/5	4	101.6	2600	1/	2.0	13	-	BCH00107		-
	15	330.2	2	30.8	2000	25	39	CE	-	BCHOOLOS	_	
	13	330.2	3	76.2	4200	35	5.4	13	-	00000	_	BCH00192
ł	13	330.2	0	152,4	4000	17	2.6	13	-	BCH00109	DCUO0164	
	14%	308.3	3	10.2	2300	1/	2.1	13	-	DCID0110	BCH00154	
	15%	38/ M	2	50.8	1500	15	24	(24	-	BCH00110	_	-
	16	406.4	3	76.2	5000	34	52	C2A		BCH00112	_	
ł	161/	410.1	2	50.2	3000	30	46	(24	_	BCH00112		
	161/	410 1	3	76.2	5400	35	5.5	(24	_	BCH00113		_
	164	419.1	31	88 0	1800	10	16	C2A	_	DC.1600114	BCH00155	_
	16%	419 1	31	88.9	2500	14	22	T3		BCH00115		
t	16%	419.1	4	101.6	3500	17	2.7	C2A	-	BCH00116	-	-
	16%	419.1	5	127.0	4350	17	2.7	T3	_	BCH00117	_	-
	17%	444.5	1%	38.1	825	10	16	C2A	_	BCH00118	-	<u> </u>
	19%	489.0	2%	63.5	5000	34	52	C2A		BCH00119		
t	21	533,4	45	114.3	5039	17	2.7	C2A	-	-	BCH00156	-
	21	533.4	6	152.4	5600	14	22	T3	-	-	BCH00157	-
	21%	546.1	31/2	88.9	3000	13	2.0	T3	-	-	BCH00158	
	26	660.4	5	127.0	6800	17	2.6	C2A	_	_	BCH00159	-
ſ	28	711.2	4%	114.3	6600	17	2.6	T3	-	-	BCH00160	
1	28	711.2	5	127.0	5750	13	2.0	T3	-		BCH00161	-
1	32%	825.5	3%	88.9	3000	8	1.3	C2A	-		BCH00162	- /

Ordering Information

	Standard Heaters Select a Ceramic Insulated Band Heater from pages 1-63 through 1-65. Each heater's Termination Type is indicated. Type L L bas 10° kmg leads	Cust Understandi for sizes and ratii Ceramic Insulated <i>is 3 weeks.</i> <i>Please Specify</i> the	om Engineered/Manufactured Heaters ng that an electric heater can be very application specific, ngs not listed TEMPCO will design and manufacture a Band Heater to meet your requirements. Standard lead time e following:	0
	Type WI has 12" long leads with 10" wire braid.	 Inside Diameter Width 	 Termination (see pages 1-68 through 1-74) Lead Cable/Braid Length 	
5	Type R2A has 12" long leads with 10" galvanized steel armor cable.	 Wattage Voltage 	 Construction style (see page 1-66) Clamping variation (see page 1-67) 	(

MARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.

APPENDIX J: CONVECTIVE HEAT TRANSFER OF AIR CALCULATION

STR BRYAN MENDOVA PACE 1/1 50594 33 MET-Z AIR PROPERTIES OF CONVECTIVE HEAT TRANSFER COEFFICIENT DETERMINA HON of An. USING THE EMPIRICAL FORMULA ; hew = 12.12 - 1.10 + 11.6 1/2 where : new - heat transfer wefficient W mz oc Diameter of bornel = 8 in = 0.203 m Length of barrel per section = L = 201n = 0.508 m FLOW RATE OF AIR = 441.71FM = $\frac{1417}{min} + \frac{1}{100} \times \frac{1}{3.28} \times \frac{$ FUN MEA : A = #Dh = # (0.203) (2.508) = 0.324 m2 VEROCITY: O=AV V = Q = 0.210 m/s = 0.672 m/sA = 0.324 mhew = 12.12 - 1.16 (0.672) + 11.660672) 1/2 = 20.8495 N 12 °C

APPENDIX K: FIN CALCULATION

STR BRYAN MENDOZA PACE 1 5059633 MET-2 SIZING OF FIN. USING TRIPA MO ETRON to CALATE THE LEAKTH OF EACH FIN FIGURE 3 43 ON PADE 162 ON HEAT TRANSFER, A PRACTICAL APPROACH BY CENGER SHONS ANNULAR FINS SIMULAR ON THE CURRENT SETUP PAROMETERS VALUES =+ Y. 0.12779m 12 0.1143 +L M r, + L 4 0.00081 m. 92% -12+ EFF. 1.2 TRIAN & GUAGE 20 COPPER SHEEF EFF. CURUE EMANN tO GET """ USING EFF CURUE = 12 + 0.5 t 1.2 = r2 + 0.5 t r, 1.2 = (0.1143 FL) + 0.5 (0.0081) 0.1277gm L= 0.02515 m ~ 0.99025 in

STR PAGE 2/2 BRUIAN MENDOTA 5059633 M57-2 SIZING OF FIN. VALUE OF "L" USING PATE CHECKING THE CALCULATED THERMO GEOMETTUCAL PARAMOTER ON THE X-AXIS OF THE GRMP 4 G = (L+ 2 +) / M/kt MACHE L = 0.025 m $h = 20.85 W/m^{2} c$ k = 401 N - COPPER $m^{-2}C$ = (0.02515 E 20.85 + = (0.0008128m 0.0008,128 ξ 0.204 A CALCULATED PROM MABLE: 0.19 34 0.204 ACTUAL 930 1.2 0.19

STR BEVAN MENDOZA PADE 1/2 505 96 33 MET-2 COMPUTATION FOR FIN SPACING USING TITE PORMULA Rm = <u>9B (Ts-Ta)</u> L³Pr -EQ. 9-30 pp. 171 ON HEAT MAMSFER BY CENGEL. TABLE A-15 : USIN6 Values Parameters Definition. 9. Pl m/s² r/s 0 00731 °C gravity coreficient OF volume expansion 150.5°C Film temperature process temperature Tf 50F or 287°C Ts Ambient Temp 30°C To Leng th 0,90 m 1.0×10⁻⁵ m*/s 1 kinemahic V Viscosito Prand +1 number 0.7282 Pr - A himber $s = \frac{1}{T_{f}}; T_{f} = \frac{1}{2}(T_{s} + T_{o2})$ $T_{f} = \frac{1}{2}(287^{\circ}C + 30^{\circ}C) = 158.5^{\circ}C$ $\int = \frac{1}{T_{f}} = \frac{1}{159.5^{\circ}C} = 0.00231^{\circ}C$

STR page 2/2 BRYAN MENDOZA 8059633 MET 2 FIN SPACING L= 2TTr L= 2TT(01529m) L= 0. 96098m Applying the PORMULA Ral = <u>gp (Ts-Ta) L</u>³ Pr $\frac{R_{q_{L}}}{(1.608 \times 10^{-5})^{3}} = \frac{9.81(0.00231)(287.78-30)(0.96098)^{3}}{(1.608 \times 10^{-5})^{3}}$ Rac = 146,3493,778 = 1.96 ×10'0 USING FORMULA Sophimum Soptimum = 2.714 (5°2) 0.75 2.214 L Ras 2.214 L Ras Ray 0.25 $Sophimum = 20714 \int 0.900959 \\ \left[(140,10^{10}) \right] \\ Sophimum = 0.0075m \\ = 0.295in \approx 3/8 in$

APPENDIX L: FIN DESIGN

APPENDIX M: UPPER AND LOWER SHROUD DESIGN, FLAPPER, AND CLAMP

APPENDIX N: BOLT CHART

Source: https://storegdy1ehz.mybigcommerce.com/content/Socket%20Head%20Cap%20Screws%20Dimensions%20 %26%20Specs%20_%20AFT%20Fasteners%202022.pdf

Socket Head Cap Screws: Dimensions and Specifications

andard Socket H	ead Cap Screw	w Dimensions	(Alloy & Stal	nless Steel)				ASME B1	8.3-2003					
Basic Screw Diameter	Body Dla	Body Dlameter (D)		ter (D) Head Dlameter (A)		Head Height (H)		Hex Socket Size (J)	Fillet Junctur Bearing S	re Diameter at Surface (F)	Key Engage- ment (T)	Wall Thick- ness (G)	Bottom Chamfer or Radlus (K)	
	Max	Min	Max	Min	Max	Min	Max	Nom	Max	Min	Min	Min	Max	
0	0.0600	0.0568	0.096	0.091	0.060	0.057	0.004	0.050	0.074	0.062	0.025	0.020	0.007	
1	0.0730	0.0695	0.118	0.112	0.073	0.070	0.005	1/16	0.087	0.075	0.031	0.025	0.007	
2	0.0860	0.0822	0.140	0.134	0.086	0.083	0.008	5/64	0.102	0.090	0.038	0.029	0.007	
3	0.0990	0.0949	0.161	0.154	0.099	0.095	0.008	5/64	0.115	0.102	0.044	0.034	0.007	
4	0.1120	0.1075	0.183	0.176	0.112	0.108	0.009	3/32	0.130	0.117	0.051	0.038	0.008	
5	0.1250	0.1202	0.205	0.198	0.125	0.121	0.012	3/32	0.145	0.132	0.057	0.043	0.008	
6	0.1380	0.1329	0.226	0.218	0.138	0.134	0.013	7/64	0.158	0.144	0.064	0.047	0.008	
8	0.1640	0.1585	0.270	0.262	0.164	0.159	0.014	9/64	0.188	0.172	0.077	0.056	0.008	
10	0.1900	0.1840	0.312	0.303	0.190	0.185	0.018	5/32	0.218	0.202	0.090	0.065	0.008	
1/4	0.2500	0.2435	0.375	0.365	0.250	0.244	0.025	3/16	0.278	0.261	0.120	0.095	0.010	
5/16	0.3125	0.3053	0.469	0.457	0.312	0.306	0.033	1/4	0.347	0.329	0.151	0.119	0.010	
3/8	0.3750	0.3678	0.562	0.550	0.375	0.368	0.040	5/16	0.415	0.397	0.182	0.143	0.010	
7/16	0.4375	0.4294	0.656	0.642	0.438	0.430	0.047	3/8	0.484	0.465	0.213	0.166	0.015	
1/2	0.5000	0.4919	0.750	0.735	0.500	0.492	0.055	3/8	0.552	0.531	0.245	0.190	0.015	
5/8	0.6250	0.6163	0.938	0.921	0.625	0.616	0.070	1/2	0.689	0.664	0.307	0.238	0.015	
3/4	0.7500	0.7406	1.125	1.107	0.750	0.740	0.085	5/8	0.828	0.800	0.370	0.285	0.015	
7/8	0.8750	0.8647	1.312	1.293	0.875	0.864	0.100	3/4	0.963	0.932	0.432	0.333	0.020	
1	1.0000	0.9886	1.500	1.479	1.000	0.988	0.114	3/4	1.100	1.068	0.495	0.380	0.020	
1-1/4	1.2500	1.2336	1.875	1.852	1.250	1.236	0.144	7/8	1.370	1.333	0.620	0.475	0.020	
1-1/2	1 5000	1 4818	2 250	2 224	1 500	1.485	0.176	1	1 640	1 601	0.745	0.570	0.020	
Tensile Strer		Tensile Stren	gth (lbs., mln)		Yield Strength (Ibs., min)				Body Section		Tightening Torque (in ibs.)			
---------------	---------	---------------	-----------------	---	----------------------------	-------------------------	---------	-----------	--------------	--------------	-----------------------------	-----------	----------	----------
Nominal Size	UN	RC	UN	JNRF UNRC UNRF Single Shear Strength (lb min.)		Strength (Ibs., In.)	UN	IRC	UNRF					
	Alloy	Stainless	Alloy	Stainless	Alloy	Stainless	Alloy	Stainless	Alloy	Stainless	Alloy	Stainless	Alloy	Stainles
0			320	145			290	72	305	130			2.6	1.4
1	475		500	220	425		450	111	450	190	4.5		4.8	2.3
2	665	295	710		600	185	635		625	260	7.5	3.8	8.0	
3	875	3 . -1	940		790		845		830		11.0	-	12.0	
4	1,090	480	1,190	÷.	975	240	1,070	8	1,060	350	16.0	6.0	18.0	
5	1,430		1,490		1,290		1,345	•	1,325		24.0	-	24.0	
6	1,640	725	1,825		1,470	363	1,645		1,615	375	30.0	15.0	34.0	
8	2,520	1,120	2,650	•	2,270	560	2,385	•	2,280	670	55.0	28.0	58.0	
10	3,150	1,400	3,600	1,600	2,835	701	3,240	800	3,060	950	79.0	40.0	90.0	46.0
1/4	5,725	2,550	6,550	2,910	5,150	1,273	5,900	1,455	5,295	2,200	200.0	95.0	230.0	109.0
5/16	9,430	4,200	10,440	4,645	8,490	2,100	9,395	2,230	8,285	3,450	415.0	170.0	460.0	188.0
3/8	13,950	6,100	15,805	7,025	12,555	3,100	14,225	3,510	11,910	4,970	740.0	301.0	845.0	341.0
7/16	19,135	347	21,365		17,220		19,230		16,200	3 4 0	1,190.0		1,305.0	
1/2	25,540	11,350	28,780		22,990	5,675	25,905		21,175	8,840	1,800.0	750.0	2,065.0	
5/8	38,400		43,500		34,550		39,150		31,300	•	3,400.0		3,800.0	
3/4	56,750		63,400		51,100		57,050		45,050		6,000.0		6,750.0	
7/8	78,500		86,500	-	70,700		77,850		61,350		8,250.0		9,200.0	
1	103,000		112,700	•	92,700	-	101,450	·	80,100	•	12,500.0		13,000.0	
1-1/4	164,700		182,400		148,250		164,150		125,100		25,000.0		27,750.0	
1-1/2	238,800		268,800		215,950		241,900		180 200		43,500.0		49,000,0	

APPENDIX O: BOLT STRESS CALCULATION & COPPER SURFACE AREA

Source: Original

STR PAGE 1/1 BRVAN MENDORA 505 9433 MET-2 BUT SHEAR SRESS CALCULATION SINGLE SHEAR STRESS T = FORCE : F SINGLE SHEAR Shear Atto At F = 33.455/bs (SHEQUD + BLOWJER)(20/0s + 15.435/bs) $AREA : <math>\frac{\pi}{4} U' = \frac{\pi}{4} \left(\frac{5}{10}\right)^2 = 0.076\%$ t = 31.925/bs - 435.92 psi 0.0767 SIACE 2 BOUR PADRYING THE ISAD 2 . 42C.42 T = 217.96 psi <u>CAFEII</u> MAXIMUM ALLOWABLE IMEMA : 4200 psi (B) BLOWER DIRECT TEASILE STRESS F : WEIGHT OF BUDGER : 15. 93165 Anin \$D2 = # (0.3053)2 = 0.0732, in2 E= F = 15.93 hs = 210 764 psi SINCE 4-BOLT CARRYING THE LOAD 8 = 210.769 = 52.7112psi MAXIMUM ALLOVABLE PENGLE STRENGTH OF ME MATERIAL: 4200 psi

STR PAGE 1/1 BAYAN MENDOZA 5059433 MET-2 COPPER FINS CLAMPS LOCKING MECHANISM AREA + 2.50 + T 1 1 Т A = 2.5 x 25-27 25.27 A = 63.175 in2 NO. OF HAS IN TOTAL = 12×5 = 60 NO. OF CUMPS IN POTAL: 4×5 = 20 NO OF LOCKING MECHANISM : 12×5= 60 t A = MIr x t A = T (4.38) × 0.5 = 6.88 in2 A: 0.4 + 2(0.8) × (3.25+20.8) 2 × 1.85 = 9.7 in2 A: : 37 90.5 60 x 63.175 in7 137.6 20 × 6.88 in2 Ţ 582 60 × 9.7 in2 = 4510.1 in2 x 1ft2 144in~ = 51.32 fJ 2

APPENDIX P: BILL OF MATERIALS

Blower
https://www.motor-pump-ventilation.com/merchant/product/centrifugal-fan-mb-3000-rpm-three-
<u>phase</u>
Three Phase Mini Circuit Breaker-
<u>https://www.grainger.ca/en/product/p/GGE5ZUU9?cm_mmc=PPC:+Google+PLA&gclid=Cj0</u>
KCQiA9YugBhCZARIsAACXxeLgly3IetOpeEDj1VstkLYa5WXOaWkQH4AvzVX_cbO7JHkRmBv
<u>yY4QaAhevEALw_wcB&gclsrc=aw.ds</u>
Magnetic Contactor:
https://www.plc-city.com/shop/en/schneider-electric/snr-lc1d09p7-
nfs.html?SubmitCurrency=1&id_currency=5&gclid=Cj0KCQiA9YugBhCZARIsAACXxeKb1D2
sTJFKE9-DLIxyX3TfZwgUYqd0-zABGfh45NCQi0IM6jIpincaAr7sEALw_wcB
Power Regulator Single Phase
https://www.itm.com/product/watlow-din-a-mite-c-single-phase-scr-power-controller-dc10-
<u>12p0-0010</u>
Switch Selector
https://www.itm.com/product/altech-2as2-3-22-mm-non-illuminated-selector-
<u>switch?ksearch_click=selector%2Bswitch</u>
Copper Wire
https://www.digikey.ca/en/products/detail/belden-
<u>inc./9916%2520002100/7389104?utm_adgroup=Single%20Conductor%20Cables%20%28Hook</u>
<u>-</u>
<u>Up%20Wire%29&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product</u>
<u>_Cables%2C%20Wires&utm_term=&productid=7389104&gclid=Cj0KCQiA9YugBhCZARIsAA</u>
CXxeIM807zhaNHIZXAQ8X0UwCWt90k23sv9mjwzpNxnGOI7TK0MI814RAaAnO2EALw_wcB
Copper Sheet (8x4ft)
https://basiccopper.com/20-gauge-copper-sheet-32-mil-36-x-
<i>10/#:~:text=This%20copper%20sheet%20is%2020,99.9%25%20pure%20copper%20alloy%201</i>
<u>10%20.</u>
Heater Band (CEH-BCH00086)
https://mpimorheat.store/store/stock-heaters/stock-ceramic-band-heaters/
Bolts and Nuts
https://www.boltdepot.com
Glycol
https://www.dynalene.com/product/ethylene-glycol-dynalene-eg/
Distilled Water
https://www.chemworld.com/ChemWorld-Distilled-Water-s/196062.htm

← → C motor-pump-ventilation.com/merchant/prod						Q	. 🖻 ★	* 🖬 (🕘 i
🏢 Apps 🧧 YouTube 💓 Gmail 🕴 Maps 🔶 iLovePDF Online	e P 📴 Homepage - New B 🚺 NBCC (New Brunsw	NBCC Activation	in bryan	mendoza Li	SENIOR TECH	NICA 🔶 Sign in to your IRC	. 📑 Visit Us		
	HOME COMPANY DELIVERY CONT	лст							
Our Products Electric motor Electric motor repair Transmission Pump Pump repair Pump accessories Fait Encisesthild fan Encisent fan Meter fan aunte	The COMPANY DELIVERY CONT Fan > Centrifugal fan Hedum pressure > Hedum press Centrifugal fan - MB type 3000 rpm - Three phase	Type Ha 14/5 T2 0,25 HB 14/5 T2 0,25 HB 16/6 T2 0,37 HB 20/6 T2 0,37 HB 20/6 T2 0,37 HB 20/6 T2 0,37 HB 20/7 T2 0,72 HB 20/7 T2 0,72 HB 22/7 T2 1,1 HB 22/7 T2 1,2 HB 22/7 T2 2,2 HB 25/10 T2 2,2 HB 25/10 T2 3,4 HB 23/11 T2 4	A kW 1,64 0.2 0,95 0.3 1,75 0.75 0,95 5,32 2,55 1,1 2,55 1,2 4,98 2,2 4,98 2,2 6,40 3,2 8,20 4,68	m>/b m>/b d s sha s 7 1340 7 5 1940 6 7 800 6 0 2246 0 0 2550 7 0 2550 7 0 3700 3 0 3800 6	B Kg CODI 0 7 316 11 0 9,5 310 12 6 15 310 41 6 16 310 12 8 14 310 31 10 24 310 12 7 32 310 22 7 32 310 22 11 46 310 24				
Axial fan Square frame Axial fan Square frame Axial fan Circular frame Axial fan on support Axial fan on support Executing fan Executing fan Executing fan Centrifugal fan Medium pressure Medium pressure fan MbD type Medium pressure fan Mb type Medium pressure fan MB type Medium pressure fan MB type Executing fan MDC type Executing fan MDC type Medium pressure fan MB type Medium pressure fan MB type Executing fan MDC type Executing fan MDC type Executing fan MDC type	USE Medium pressure centrifugal fan. Riew range from 350 to 1 400 m3 / h. Supplied with a standard three phase motor 230V 50 Hz, dire Continuos of use: • Max, air temperature: 130°C. Construction Technical data Dimensions Op Volute in carbon steel sheet. Coating in anti-corrosion epoxy reain. Impube implies, ingle inite in galvanized steel.	ct drive.			Product Price exc Price inc S Qui	ORDER code: 310115 - 245,00 € ♥ . VAT 245,00 € . VAT 245,00 € . Kotk: In Stock nthy: 1 . Add			

My Account Order History Order Lists		Why Choose Us Digital Catalog	Sign In Register Now	
Canada All Products +	Search by keyword or item number		Q Quick Order Pad + 👾 (0)	
Electrical Distribution IEC Supplement	CLEARANCE CENTRE: HURI tary Protectors MINI CIRCUIT BREAKER B C MINI CIRCUIT BREAKER B C DAYTON Web Price 0: \$76.52 / EACH	RY, ONLY WHILE SUPPLIES LAST Sa DURVESP50A KER, B CURVE, 3P, 50A	xvailability Print Print Print Print Print Print Print To view Availability for another location, please enter postal code Print New Postal Code Print	
	Item # GGE5ZUU9 1 CATALOGUE PAGE # NIA 5	Aft: Model # 52UU9 UNSPSC # 39121 Shipping Weight 0.469 lbs	601	
Product Details				

← → C iii digikey.ca/en/products/detail/belden-inc/9916%2520002100/7389104	?utm_adgroup = Single%20Conduc	tor%20Cables%20%28Hook-Up	%20Wire%29&utm	source=google&a	tm_medium=cpc&utm_campa	ign=Shopping_Product	_Cables%2C%20Wi 🌀 🛛	2 🖈 🖈 🗖 🎯 🗄
🏥 Apps 🧰 YouTube M Gmail ♀ Maps 🔖 iLovePDF Online P 💷 Homepage - New	B 👔 NBCC (New Brunsw 👔 🛛	NBCC Activation 🛛 🥫 bryan mende	za Li 📘 SENIO	TECHNICA 🐞 S	ign in to your IRC 👔 Visit Us	Overview - Wallet	DIF BOOKS FOR FR	» 📙 Other bookmarks
Digi-Key	All Products V E	inter keyword or part # sturers ~ Resources ~			Login or REGISTER - FREE SkilPPING on Orde	│		
Product Index > Cables, Wires >	Single Conductor Cables (Hook-Up Wire)	> Beiden Inc. 9916 002100			Dark N	lode III Share <		
	9916 002100			5 In S	tock			
	Digi-Key Part Number	BEL1744-100-ND		Can ship	immediately			
	Manufacturer	Belden Inc.		QUANTITY	1	9		
	Manufacturer Product Number	9916 002100		Quant				
	Description	HOOK-UP STRND 16AWG RED 1	00'					
	Manufacturer Standard Lead Ti	me 6 Weeks			Add to Cart			
image shown is a representation only. Exact	Detailed Description	16 AWG Hook-Up Wire 26/30 Re	d 300V 100.0' (30.5m)		12112121			
ppervations anounce content run are produce (pre-sheet	Customer Reference	Customer Reference			Add to List			_
	1212121			All prices	are in CAD			ack
	Datasheet	Datasheet		Spool				eedb
				QTY	UNIT PRICE	EXT PRICE		17
Developed Attributes				1	\$202.29000	\$202.29		6
Product Attributes								elp?
ТҮРЕ	DESCRIPTION		SELECT					Hpa
Category	Cables, Wires Single Conductor Cables (H	look-Up Wire)		0				ž
Mfr	Beiden Inc.							
Series								
Package	Spool (1)							
Product Status	Active							
Cable Type	Hook-Up							
Wire Gauge	16 AWG							
Conductor Strand	26/30							
Conductor Material	Copper, Tinned							

← → C iii itm.com/product/sitech-2a2.3-22-mm-non-illuminated-selector-switch?keearch_click	:=selector%28switch New Brunsw 🍸 NBCC Activation 📅 bryan	mendaza Li 📕 SENIOR TECHNICA 🍁 Sign i	n to your IRC 🍸 Visit Us \: 💩 C	안 Overview - Wallet 💩 PDF BOOKS FOR FR	☆ ★ □ () : >> □ Other bookmarks
		SI	GN IN SIGN UP MY QUOTE (0	0) CART (0)	í
TU INSTRUMENTS INC.	76 000 products Q	MEMBERS GET EXCLUSIVE PRICING ORDER STATUS	FREE SHIPPING* 4.7/	romer rating /5 STARS had reviews	
PRODUCTS A CALIBRATION	RENTALS TRAININGS	PROMOS CLEARANCE RMA/S	ERVICE FORM	ENG FR	
Home Watlow DIN-A-MITE C Single-Phase SCR Po	wer Controller, 100 to 120 V AC, phase angle outp	ut (single-phase only) Search for the "selector swite	h"		
	Altech 2AS2-3 No Switch, 22 mm, r Mode: 282-3 Bethe first to review this product Ideal for industrial application is designed to provide a high mm operator has a maintain	on-Illuminated Selec naintained three po rs, this UL-recognized metal selecto quality control solution. Easy to inst ed three-position control in black co	tor sition r switch all, this 2 lor.		
Downloads: Datasheet	Your Price	\$28.00 CAD			
More Altech Products	Availability	2 to 3 Weeks			
Rask an Expert	Quantity	1			
	■ Need a Quote?	⊯ Add to Cart		SIGN U	P & SAVE!
Description Specifications included R	esources Forum Customer Reviews			Be the first to k save 5% will your email ad	now. A prome code to I be emailed to you. dress Sign Up1
Altech 2AS2-3 Offers				Powered by Ryze	eo Ecommerce Email
Features				CH	AT LIVE
Economy of space Aesthetically pleasing Self-wing contacts Heavy-duty construction				we'r Jea	re currently offline we us a message

Dasi		in bryan mendoza (L. SENIOR TECHNICA	Sign in to your IRC 👔 Visit Us 💠 Ovenview - Waltet 🍐 PDF BOOKS F Q 252-491-2812	OR FR »
Your Online Source for Afforda	dele Premium Copper			
	SEE OUR COPPER S	SHEET THICKNESS GUID		
	Home / Cooper Sheets an	vi Rolls / 20.Gauge Copper Sheet (32.Mil) 36" X 10"		
Copper Sheets and Rolls				
Sampler Packs		20 6	une Conner Sheet (22 Mill)	
Copper Strips		20 Ga	luge Copper Sheet (32 Mil)	
Copper Strips for Cookle Cu	itters	36" X	10'	
Copper Sheets with Patina	-	\$612.	99	
Copper Oulet and Wallplate	Covers			
Copper Trim and Molding	\$		2.celinos	
Copper Nails		SKU:		
Copper Tacks		copper-fla	ashing-20-gauge-32-mil-36in-10ft	
Bottled Patinas				
Bulk Copper Rolls				
Embossing Tools & Books		Quantity:		
Copper Cleaner and Polishe	8	· 1	~	
Copper Sealers				
Gloves Recrain Rin				
bulgari bu		Add	to Cart	
DIY Copper Bartops, Count	ertops, &	Add	to Wish List	
Tabletops Tutorial			to transition -	
Project Advice, Tips, and Tut	torials			Co
C h boltdepotcom/Product-Details.aspc?product VouTube f Gmail Maps kovePDF [Online Bootcom fastener si	15983 P DR Homepage - New B 👔 NBCC (New I Depping made easy	Brunsw 👔 NBCC Activation 🛛 in bryan me Info@boltdepot.c	idoza J LL SENIOR TECHNICA Sign in to your IRC	<u>변</u> ☆ ✿ □ * <mark>□</mark> Oth
Product Cat	talog Customer Service	About Us Fastener Ir	fo	
product# or fastene	r type Q	🏲 0 items, \$0.00	Quick Add Cart / Checkout	
Accessive Accessive	Product catalog » Nuts » Hex nuts » S Hex nuts, Stainle	Stainless steel 316		
A DECK TOOL MENTING	316, 1/4-20			
UNK TO MOTHE				
which for profile	Prod. # Diameter and Thread	count Each price Bag price	Bulk price Buy	
unor for viotina	Prod. # Diameter and Thread	count Each price Bag price	Bulk price Buy	
unor for violation	Prod. # Diameter and Thread Coarse (standard) thread	count Each price Bag price	Bulk price Buy	
Link for violation	Prod. # Diamster and Thread Coarse (standard) thread 15983 1/4"-20	count Each price Bag price	Bulk price Buy 558,40 / 1000 40 Add	
und for violation	Prod. #Diameter and ThreadCoarse(standard) thread159831/4"-20	count Each price Bag price \$ \$012 / es \$725 / too \$	Bulk price Buy 558,40 / 1000 40 Add Cost of all entered products \$4,80	
under frei vromme	Prod. #Diameter and ThreadCoarse(standard) thread159831/4*-20	count Each price Bag price \$ \$012 / ea \$725 / too \$	Bulk price Buy 558.40 / 1000 40 Add Cost of all entered products \$4.80 Add to Cart	

Diameter Height

+

Width Across C

← → C						aAoKuEALw_wcB 🌀	🖻 🖈 🖿 🞯 🗄
🏢 Apps 🐽 YouTube 附 Gmail 💡 Maps 🌩 iLovePDF Online	P Dit. Homepage - New B	NBCC (New Brunsw	NBCC Activation	in bryan mendoza Li	. 📃 SENIOR TECHNICA	🔶 Sign in to your IRC	» 📔 🛄 Other bookmarks
product# or fastene	r type	Q	مر در ۲۵ ا	Items, \$0.00 Quic	ck Add Cart / Check	out	
Click for Profile	Product catalog > Sc steel > Coarse (stand Socket ca alloy stee	acket screws » Socket ca lard) thread » 5/16"-18 ap, Zinc pla el, 5/16"-18	np » Zinc plated alloy ted x 1"				
	Prod. # Len	gth Each price	Bag price	Bulk price	Buy		
	15104 1	\$0.69 / ea	\$47.46 / 100	\$404.00 / 1000	120 A	dd	
				Co	est of all entered products:	\$56.95 Cart	
	Product Ima	iges					
		Head teight Length	Diamete	er Head Diameter	Drive Size		
	Deaduat dataile						*

e bolt	depot.com/Pro	duct-Detai	is.aspx?product=2	7295		-		-			9 E \$	* 1
YouTube	M Gmail 🦞	Maps 🔷	iLovePDF Online P	bai Homepage - I	New B 📔 NBCC (New Brunsw	NBCC Acti	ration in bryan	n mendoza Li	SENIOR TECHNICA	Sign in to your IR	C *	Othe
				Prod. #	Diameter and Thread count	Each price	Bag price	Bulk price	Buy			
				Coarse (standard) thread							
				27295	5/16"-18	\$0.17 / ea	\$11.10 / 100	\$102.00 / 1000	120	Add		
								Cost of	all entered products:	\$13.32		
									Add to	Cart		
				Product	Images							
				Width Arthe File	cross	iameter H	leight					
				Product d	etails							
				Bolt Depot p	roduct# 27295							
				Units	US							
				Category	Nuts							
					Nuts have inte	mal machine thre	ads, for use with	machine thread bolts	s and screws.			

<

← → C 🔒 boltdepot.com/Product-Del	tails.aspx?product=2957							6	2 🕁 🕯	+ 🛛 🛞 🗄
Click to go back, hold to see history 🖗 Maps 4	LovePDF Online P 1	Lock w steel 18	ash 8-8, 9	NBCC (New Brunsw ers, Stair 5/16"	👔 NBCC Activation	in bryan mendoza Li.	SENIOR TECHNICA	🚸 Sign in to your IRC	ж _	Other bookmarks
		Prod. #	Size	Each price	Bag price	Bulk price	Buy			- 1
		2957	5/16"	\$0.11 / ea	\$6.07 / 100	\$53.20 / 1000	120 A d	Id		
		Product I	maga	.e			Cost of all entered product: Add to	s: \$7.28 Cart		
		Inside Diameter		Outside Diameter	Thickness					
		Product det	ails							
		Bolt Depot proc	duct#	2957						
		Units		US						
		Category		Washers Used to spread the	load of a bolt or screw	over a larger area or to h	elp prevent loosening under			

RE: Air-cooled extruder barrel inquiry

Zach Goslin <ZachGoslin@tempco.com> 2023-03-01 10:35 AM N

To: Mendoza, Bryan

This email was generated outside of NBCC, please use caution when replying.

Hi Bryan,

These numbers pulled are from a few years back so pricing would probably be higher now except for the blowers.

1 shroud ASJ00330 = US \$975.00 each

5 shrouds ASJ00330 = US \$706.00 each

1 Blower (MTR-102-107, 550 CFM) = US \$340 each

Thanks,

APPENDIX Q: RETURN ON INVESTMENT CALCULATION

Source: Original

STR -BRVAN MENDOZA page 1/2 5059633 NET-2 PMMP ELECTRIC CONSUMPTION. INOTON PUMP RATING : 24p POWER CONSUMPTION IN (KW) : Power imput & conversion factor = 2hp x 0.706 KW -1. 492 KN HE(TRICIT) CONSTRED FOR ENTIRE YEAK = \$0.1067 / FW-h SAINS JOHN ENERGY 1. 992 KW x \$ 0.1067 # 24 W8 x 350 day = \$ 1337.25 Ku-hr Iday year WIM FAX: \$1337.25 × 1.15 = 1,537.841 DISTILLED NATER Lis gal x 350 days x 8 3.63 = \$ 1,905.75 Tay 1gr 991 WITH TAX: \$ 1,905.75 X1.15 = 2191.61 61/02 10% DF NATER CONSUMPTION 15 gal × 0.1 × 350 days × \$ 36 = \$ 1,905.25 day Tyr gal WITH THY 1, 905.75× 1.15 = 2,191.6/

STR	
KRUAN MEMORIA	PAG5 2/3
5759623	
ME T - 2	
p/10 /	
BLOWER OPERATION 6 COST X	
SAULA65.	
RUMMING COST '20% DIESS FHAN NUMP	
\$ 1337-25 × 0.8 × 1.5 = \$ 1,230.27	
OVERALL SAVING IN OPENATIONAL COST PE	r yon
\$ 1,890 + \$ 1,905.75 + 1,337.25	= 5,13300
A F 122 00 1 1.15 = 5900 05	
6 5 11 5 7 00 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	
OVERALL FOUNC:	
\$ 5902.95 -\$1,230.27 = \$ 1,67.	2.68
SAVING IN PERCENTAGE	
\$ 1.6.72.68 79.2%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\$ 5, 902.95	
	No. 1
RETURN ON INVESTMENT	
OVERALL SAVINGS PER YEAR \$ 9.672.	68
PANDACK PERIOD: \$ 17, 931.08 - COST TO TAIRC	HASE
\$ 9,672.68 -> CAUINGS ;	PER YEAN
= 3.73 years	

STR BRYAN MENDOZA PASE 3/3 5059033 MET-2 RETURN ON INVESTMENT EXPECTED COSTI SAVING OVER EQUIPMENT LIFE TOTAL \$ 9,672.68 × Dyrs = \$ 238,639 TOTAL EXPECTED RETURN ON INVESTMENT (ROI) \$ 233,639 × 100% = 1,340.33% GREAT RETURN OVER ME EXPECTED LIFE &F FOUIPMENT.

APPENDIX R: CFD ANALYSIS

Source: Original

NBCC			
SOLID	WORKS	5	
[New Brunswick Community College	Saint John, New Brunswick	Mechanical Engineering Technology	Fluid Flow Simulation Project Report
Bryan Mendoza	MET-2 · · · bgme	(506) 566-4858 endoza.nb@gmail.com ·	

GENERAL INFORMATION

Objective: This simulation aims to show the material's thermal properties and airflow dynamics. It shows how specific parameters which are relevant to the projects. Key parameters include the temperature of the air, the temperature of solids, flow velocity, and the effectiveness of the design.

ANALYSIS ENVIRONMENT

Software Product:	Flow Simulation 2022 SP2.0. Build: 5593
CPU Type:	Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz
CPU Speed:	2496 MHz
RAM:	16251 MB / 1344 MB
Operating System:	Windows 10 (or higher) (Version 10.0.19045)

MODEL INFORMATION

Model Name:	THERMOFLOW SIMULATION.SLDASM
Project Name:	WITH FINS

PROJECT COMMENTS:

Unit System:	Custom Units
Analysis Type:	External (not

Custom Units External (not exclude internal spaces)

SIZE OF COMPUTATIONAL DOMAIN

Size	
X min	-1.506 m
X max	2.178 m
Y min	-1.491 m
Y max	1.972 m
Z min	-1.541 m
Z max	2.048 m
X size	3.685 m
Y size	3.464 m
Z size	3.589 m

SIMULATION PARAMETERS MESH SETTINGS BASIC MESH

Basic Mesh Dimensions

Number of cells in X	38
Number of cells in Y	36
Number of cells in Z	36

ANALYSIS MESH

Total Cell count:	146478
Fluid Cells:	100118
Solid Cells:	46360
Partial Cells:	36611
Trimmed Cells:	0

ADDITIONAL PHYSICAL CALCULATION OPTIONS

Heat Transfer Analysis:	Heat conduction in solids: OnHeat conduction in solids only: Off
Flow Type:	Laminar and turbulent
Time-Dependent Analysis:	Off
Gravity:	Off
Radiation:	Off
Humidity:	Off

Default Wall Roughness: 0 micrometre

MATERIAL SETTINGS

Material Settings

Fluids

Air

Solids Aluminum 6061 Plain Carbon Steel LLDPE Copper Alumina (Typical)

INITIAL CONDITIONS

Ambient Conditions

Thermodynamic parameters	Static Pressure: 101325.00 Pa
	Temperature: 29.85 °C
Velocity parameters	Velocity vector
	Velocity in X direction: 0 m/s
	Velocity in Y direction: 0 m/s
	Velocity in Z direction: 0 m/s
Solid parameters	Default material: Aluminum 6061
	Initial solid temperature: 29.85 °C
Turbulence parameters	Turbulence intensity and length
	Intensity: 2.00 %
	Length: 4.800e-04 m

BOUNDARY CONDITIONS

Fans External Inlet Fan 1 Default Wall Roughness: 0 micrometre

MATERIAL SETTINGS

Material Settings

Fluids

Air

Solids Aluminum 6061 Plain Carbon Steel LLDPE Copper Alumina (Typical)

INITIAL CONDITIONS

Ambient Conditions

Thermodynamic parameters	Static Pressure: 101325.00 Pa
	Temperature: 29.85 °C
Velocity parameters	Velocity vector
	Velocity in X direction: 0 m/s
	Velocity in Y direction: 0 m/s
	Velocity in Z direction: 0 m/s
Solid parameters	Default material: Aluminum 6061
	Initial solid temperature: 29.85 °C
Turbulence parameters	Turbulence intensity and length
	Intensity: 2.00 %
	Length: 4.800e-04 m

BOUNDARY CONDITIONS

Fans External Inlet Fan 1 Default Wall Roughness: 0 micrometre

MATERIAL SETTINGS

Material Settings

Fluids

Air

Solids Aluminum 6061 Plain Carbon Steel LLDPE Copper Alumina (Typical)

INITIAL CONDITIONS

Ambient Conditions

Thermodynamic parameters	Static Pressure: 101325.00 Pa
	Temperature: 29.85 °C
Velocity parameters	Velocity vector
	Velocity in X direction: 0 m/s
	Velocity in Y direction: 0 m/s
	Velocity in Z direction: 0 m/s
Solid parameters	Default material: Aluminum 6061
	Initial solid temperature: 29.85 °C
Turbulence parameters	Turbulence intensity and length
	Intensity: 2.00 %
	Length: 4.800e-04 m

BOUNDARY CONDITIONS

Fans External Inlet Fan 1

ENGINEERING GOALS

Goals

Global Goals

GG Average Temperature (Fluid) 1

Туре	Global Goal
Goal type	Temperature (Fluid)
Calculate	Average value
Coordinate system	Global Coordinate System
Use in convergence	On

GG Heat Transfer Rate (Convective) 2

Туре	Global Goal
Goal type	Heat Transfer Rate (Convective)
Coordinate system	Global Coordinate System
Use in convergence	On

GG Average Temperature (Solid) 3

Туре	Global Goal
Goal type	Temperature (Solid)
Calculate	Average value
Coordinate system	Global Coordinate System
Use in convergence	On

Nodal Goals

FG External Inlet Fan 1 Volume Flow Rate

Iype Nodal Goal

c

Min/Max Table

Name	Minimum	Maximum
Density (Fluid) [kg/m^3]	0.73	1.17
Density (Solid) [kg/m^3]	925.00	8960.00
Pressure [Pa]	101278.73	101901.52
Temperature [°C]	29.81	210.00
Temperature (Fluid) [°C]	29.81	210.00
Temperature (Solid) [°C]	30.05	210.00
Velocity [m/s]	0	16.442
Velocity (X) [m/s]	-8.734	15.099
Velocity (Y) [m/s]	-11.202	13.195
Velocity (Z) [m/s]	-10.385	13.859
Axial Velocity [m/s]	-10.385	13.859
Circumferential Velocity	-15.752	10.091
[m/s]		
Mach Number []	0	0.05
Radial Velocity [m/s]	-9.430	12.122
Velocity RRF [m/s]	0	16.442
Velocity RRF (X) [m/s]	-8.734	15.099
Velocity RRF (Y) [m/s]	-11.202	13.195
Velocity RRF (Z) [m/s]	-10.385	13.859
Distributed Force [Pa]	101288.76	101849.27
Relative Pressure [Pa]	-46.27	576.52
Shear Stress [Pa]	0	13.40
Bottleneck Number []	0	1.0000000
Heat Flux [W/m^2]	0	5039988.066
Heat Flux (X) [W/m ²]	-855925.479	359598.447
Heat Flux (Y) [W/m^2]	-799674.537	4943230.969
Heat Flux (Z) [W/m^2]	-295399.787	982498.255
Heat Transfer Coefficient	3.998e-05	543.428
[W/m^2/K]		
Overheat above Melting	-1666.068	85.150
Temperature [K]		
ShortCut Number []	0	1.0000000
Surface Heat Flux [W/m ²]	-587272.646	587272.646
Surface Heat Flux	-587272.646	587272.646
(Conductive) [W/m^2]		
Surface Heat Flux	-29143.547	82591.313
(Convective) [W/m^2]		
Total Enthalpy Flux [W/m^2]	-1682264.307	1062255.467
Acoustic Power [W/m^3]	0	1.591e-06

Thermal conductivity

Solids

Aluminum 6061

Path: Solids Pre-Defined\Alloys

Density: 2700.00 kg/m^3

Specific heat

Conductivity type: Isotropic

Thermal conductivity

Electrical conductivity: Conductor Resistivity: 3.7000e-08 Ohm*m Radiation properties: No Melting temperature: Yes Temperature: 582.00 °C Plain Carbon Steel Path: Solids User Defined\THERMOFLOW SIMULATION.SLDASM\Default Density: 7800.00 kg/m^3 Specific heat: 440.0 J/(kg*K) Conductivity type: Isotropic Thermal conductivity: 43.0000 W/(m*K) Electrical conductivity: Dielectric Radiation properties: No Melting temperature: No *LLDPE* Path: Solids User Defined\THERMOFLOW SIMULATION.SLDASM\Default Density: 925.00 kg/m^3 Specific heat: 2400.0 J/(kg*K) Conductivity type: Isotropic Thermal conductivity: 0.2000 W/(m*K) Electrical conductivity: Dielectric Radiation properties: No Melting temperature: Yes Temperature: 124.85 °C Copper Path: Solids Pre-Defined Metals Density: 8960.00 kg/m^3

Electrical conductivity: Conductor Resistivity: 3.7000e-08 Ohm*m Radiation properties: No Melting temperature: Yes Temperature: 582.00 °C Plain Carbon Steel Path: Solids User Defined\THERMOFLOW SIMULATION.SLDASM\Default Density: 7800.00 kg/m^3 Specific heat: 440.0 J/(kg*K) Conductivity type: Isotropic Thermal conductivity: 43.0000 W/(m*K) Electrical conductivity: Dielectric Radiation properties: No Melting temperature: No *LLDPE* Path: Solids User Defined\THERMOFLOW SIMULATION.SLDASM\Default Density: 925.00 kg/m^3 Specific heat: 2400.0 J/(kg*K) Conductivity type: Isotropic Thermal conductivity: 0.2000 W/(m*K) Electrical conductivity: Dielectric Radiation properties: No Melting temperature: Yes Temperature: 124.85 °C Copper Path: Solids Pre-Defined Metals Density: 8960.00 kg/m^3

Specific heat: 765.0 J/(kg*K) Conductivity type: Isotropic Thermal conductivity: 16.0000 W/(m*K) Electrical conductivity: Dielectric Radiation properties: No Melting temperature: Yes Temperature: 1700.00 °C

PRESSURE:

VELOCITY

TEMPERATURE CUT PLOT

Simulation of FINAL THERMAL ANALYSIS

Date: April 3, 2023 Designer: Bryan Mendoza Study name: Thermal 1 Analysis type: Thermal(Steady state)

DESCRIPTION Copper Fins

MATERIAL PROPERTIES

Model Reference	Properties	Components
×	Name:Plain C SteelModel type:Linear IsotropDefault failureUnknow criterion:Thermal0.00057conductivity:BTU/(i Specific heat:Specific heat:0.10517 Btu/(lbMass density:0.28179 lb/in^3	Carbon SolidBody 1(Boss- Extrude1)(BARELL Elastic EXPERIMENT-1) ic wn 75114 n.s.F) 12 .F) 03
Curve Data: N/A		
*	Name: Copp Model type: Line: Isotr Default failure Max criterion: Stres Thermal 0.005 conductivity: BTU Specific heat: 0.093 Btu/(Mass density: 0.321	perSolidBodyar Elastic1(CirPattern1)(FINSopicFOLDABLE-1),von MisesSolidBodys1(CirPattern1)(FINS521615FOLDABLE-10),/(in.s.F)SolidBody516771(CirPattern1)(FINSlb.F)533 lb/in^3

THERMAL LOADS

Load name	Load Image	Load Details	
Temperature- 1		Entities 1 face(s) Temperature: 410 Fahrenheit	
Convection-1	*	Entities: 6285 face(s) Convection Coefficient: 23 W/(m^2.K) Time variation: Off Temperature variation: Off Bulk Ambient 303 Kelvin Temperature: Time variation: Off	

INTERACTION INFORMATION

Interaction	Interaction Image	Interaction Properties
Global Interaction	+	Type: Bonde d Components 1 : compo nent(s) Options: Indepe ndent mesh

MESH INFORMATION

Mesh type	Mixed Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points for High-quality mesh	16 Points
Jacobian check for shell	On
Element Size	0.416783 in
Tolerance	0.0208391 in
Mesh Quality	High
Remesh failed parts independently.	Off

MESH INFORMATION – DETAILS

Total Nodes	136420	
Total Elements	75402	
Time to complete mesh(hh;mm;ss):	00:03:44	

MESH INFORMATION - DETAILS

Total Nodes	136420
Total Elements	75402
Time to complete mesh(hh;mm;ss):	00:03:44
Computer name:	BRYAN-MENDOZA

STUDY RESULTS

Name	Туре	Min	Max
Thermal3	TEMP: Temperature	1.909e+02Celsius Node: 92426	2.100e+02Celsius Node: 1

Simulation of FINAL THERMAL ANALYSIS

Date: April 3, 2023 Designer: Solidworks Study name: Thermal 1 Analysis type: Thermal(Steady st

DESCRIPTION Aluminum

MODEL INFORMATION

MATERIAL PROPERTIES

Model Reference	Properties		Components
×	Name: Model type: Default failure criterion: Thermal conductivity: Specific heat: Mass density:	Plain Carbon Steel Linear Elastic Isotropic Unknown 0.000575114 BTU/(in.s.F 0.105112 Btu/(lb.F) 0.281793 lb/in^3	SolidBody 1(Boss- Extrude1)(BAR ELL EXPERIMENT -1)
Curve Data: N/A			
×	Name: Model type: Default failure criterion: Thermal conductivity: Specific heat: Mass density:	3003 Alloy Linear Elastic Isotropic Max von Mises Stress 0.00227371 BTU/(in.s.F) 0.238892 Btu/(lb.F) 0.0975437 lb/in^3	SolidBody 1(CirPattern1)(FINS FOLDABLE-1), SolidBody 1(CirPattern1)(FINS
Curve Data: N/A			

THERMAL LOADS

Load name	Load Image	Load Details	
Temperature- 1	×	Entities: Temperature:	1 face(s) 410 Fahrenheit
Convection-1		Entities: Convection Coefficient: Time variation: Temperature variation: Bulk Ambient Temperature: Time variation:	6285 face(s) 23 W/(m^2.K) Off Off 303 Kelvin Off
STUDY RESULTS

Name	Туре	Min	Max
Thermal3	TEMP: Temperature	1.861e+02Celsius Node: 92426	2.100e+02Celsius Node: 1

